简单的
方法如果您设法以正确的顺序打印所有内容,您可以轻松避免不必要if
的语句并优化数学计算作为副作用。
为了找到毕达哥拉斯三元组,我修改了你的第一个方法,这样我就可以避免sqrt
在每个位置调用。
#include <stdio.h>
#include <math.h>
// all the loops will test numbers from 1 to 60 included
#define LIMIT 61
int main ( int argc, char * argv[] ) {
int i, j, k, k2, sum;
// print the first line of reference numbers
// start with a space to allign the axes
putchar(' ');
// print every digit...
for ( i = 1; i < LIMIT; ++i )
putchar('0' + i%10);
// then newline
putchar('\n');
// now print every row
for ( i = 1; i < LIMIT; ++i ) {
// first print the number
putchar('0' + i%10);
// then test if the indeces (i,j) form a triple: i^2 + j^2 = k^2
// I don't want to call sqrt() every time, so I'll use another approach
k = i;
k2 = k * k;
for ( j = 1; j < i; ++j ) {
// this ^^^^^ condition let me find only unique triples and print
// only the bottom left part of the picture
// compilers should be (and they are) smart enough to optimize this
sum = i * i + j * j;
// find the next big enough k^2
if ( sum > k2 ) {
++k;
k2 = k * k;
}
// test if the triple i,j,k matches the Pythagorean equation
if ( sum == k2 )
// it's a match, so print a '*'
putchar('*');
else
// otherwise print a space
putchar(' ');
}
// the line is finished, print the diagonal (with a '\\') and newline
printf("\\\n");
// An alternative could be to put the reference numbers here instead:
// printf("%c\n",'0' + i%10);
}
return 0;
}
这个程序的输出是:
123456789012345678901234567890123456789012345678901234567890
1\
2 \
3 \
4 *\
5 \
6 \
7 \
8 * \
9 \
0 \
1 \
2 * * \
3 \
4 \
5 * \
6 * \
7 \
8 \
9 \
0 * \
1 *\
2 \
3 \
4 * * * \
5 \
6 \
7 \
8 * \
9 \
0 * \
1 \
2 * \
3 \
4 \
5 * \
6 * * \
7 \
8 \
9 \
0 * * \
1 \
2 * \
3 \
4 * \
5 * * \
6 \
7 \
8 * * * \
9 \
0 \
1 \
2 * \
3 \
4 \
5 * \
6 * * \
7 \
8 \
9 \
0 * * * * \
不太
容易的方法 我将向您展示另一种打印出您想要的内容的方法。
考虑使用字符串数组作为绘图空间,存储在结构中。这似乎很复杂,但您可以简化甚至概括输出过程:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct {
char **img;
int rows;
int cols;
} Image;
Image *init_image( int r, int c, char s ) {
int i;
char *tmp = NULL;
Image *pi = malloc(sizeof(Image));
if ( !pi ) {
perror("Error");
exit(-1);
}
pi->rows = r;
pi->cols = c;
pi->img = malloc(r * sizeof(char*));
if ( !pi->img ) {
perror("Error");
exit(-1);
}
for ( i = 0; i < r; ++i ) {
tmp = malloc(c + 1);
if ( !tmp ) {
perror("Error");
exit(-1);
}
// fill with initial value (spaces) and add the terminating NULL
memset(tmp,s,c);
tmp[c] = '\0';
pi->img[i] = tmp;
}
return pi;
}
void free_image( Image *pi ) {
int i;
if ( !pi || !pi->img ) return;
for ( i = 0; i < pi->rows; ++i ) {
free(pi->img[i]);
}
free(pi->img);
free(pi);
}
void draw_axes( Image *pi ) {
int i;
if ( !pi ) return;
// I use to loops because cols can be != rows, but if it's always a square...
for ( i = 1; i < pi->cols; ++i ) {
pi->img[0][i] = '0' + i%10;
}
for ( i = 1; i < pi->rows; ++i ) {
pi->img[i][0] = '0' + i%10;
}
}
void draw_diagonal ( Image *pi, char ch ) {
int i, m;
if ( !pi ) return;
m = pi->rows < pi->cols ? pi->rows : pi->cols;
for ( i = 1; i < m; ++i ) {
pi->img[i][i] = ch;
}
}
void print_image( Image *pi ) {
int i;
if ( !pi ) return;
for ( i = 0; i < pi->rows; ++i ) {
printf("%s\n",pi->img[i]);
}
}
void draw_triples( Image *pi, char ch ) {
int i, j, k, k2, sum;
for ( i = 1; i < pi->rows; ++i ) {
k = i;
k2 = k * k;
// print only the left bottom part
for ( j = 1; j < i && j < pi->cols; ++j ) {
sum = i * i + j * j;
if ( sum > k2 ) {
++k;
k2 = k * k;
}
if ( sum == k2 ) {
pi->img[i][j] = ch;
// printf("%d %d %d\n",i,j,k);
}
}
}
}
int main(int argc, char *argv[]) {
// Initialize the image buffer to contain 61 strings of 61 spaces
Image *img = init_image(61,61,' ');
// draw the reference numbers at row 0 and column 0
draw_axes(img);
// draw a diagonal with character '\'
draw_diagonal(img,'\\');
// put a '*' if a couple of coordinates forms a Pythagorean triple
draw_triples(img,'*');
// print out the image to stdout
print_image(img);
free_image(img);
return 0;
}
这段代码的输出与前面的代码片段相同,但是,不管你信不信,这更快(至少在我的系统上),因为 print to 的函数调用数量更少stdout
。
附录
这离话题很远,但我很高兴调整以前的代码来实际输出一个图像文件(作为灰度 512x512 PGM 二进制格式的文件),表示所有边长为 8192 的三元组。
每个像素对应一个 16x16 的正方形块,如果没有匹配则为黑色,或者更亮,具体取决于在块中找到的算法的三倍数。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct {
char *img; // store data in a 1D array this time
int dim;
int samples;
} Image;
Image *init_image( int d, int z );
void free_image( Image *pi );
void add_sample( Image *pi, int r, int c );
void draw_triples_sampled( Image *pi );
void save_image( char *file_name, Image *pi );
int main(int argc, char *argv[]) {
// store the results in a 512x512 image, with each pixel corresponding
// to a 16x16 square, so the test area is 8192x8192 wide
Image *img = init_image(512,16);
draw_triples_sampled(img);
save_image("triples.pgm",img);
free_image(img);
return 0;
}
Image *init_image( int d, int z ) {
Image *pi = malloc(sizeof(Image));
if ( !pi ) {
perror("Error");
exit(-1);
}
pi->dim = d;
pi->samples = z;
pi->img = calloc(d*d,1);
if ( !pi->img ) {
perror("Error");
exit(-1);
}
return pi;
}
void free_image( Image *pi ) {
if ( !pi ) free(pi->img);
free(pi);
}
void add_sample( Image *pi, int r, int c ) {
// each pixel represent a square block of samples
int i = r / pi->samples;
int j = c / pi->samples;
// convert 2D indeces to 1D array index
char *pix = pi->img + (i * pi->dim + j);
++(*pix);
}
void draw_triples_sampled( Image *pi ) {
int i, j, k, k2, sum;
int dim;
char *val;
if ( !pi ) return;
dim = pi->dim * pi->samples + 1;
for ( i = 1; i < dim; ++i ) {
k = i;
k2 = k * k;
// test only bottom left side for simmetry...
for ( j = 1; j < i; ++j ) {
sum = i * i + j * j;
if ( sum > k2 ) {
++k;
k2 = k * k;
}
if ( sum == k2 ) {
add_sample(pi,i-1,j-1);
// draw both points, thanks to simmetry
add_sample(pi,j-1,i-1);
}
}
}
}
void save_image( char *file_name, Image *pi ) {
FILE *pf = NULL;
char v;
char *i = NULL, *end = NULL;
if ( !pi ) {
printf("Error saving image, no image data\n");
return;
}
if ( !file_name ) {
printf("Error saving image, no file name specified\n");
return;
}
pf = fopen(file_name,"wb");
if ( !pf ) {
printf("Error saving image in file %s\n",file_name);
perror("");
return;
}
// save the image as a grayscale PGM format file
// black background, pixels from gray to white
fprintf(pf,"P5 %d %d %d ",pi->dim,pi->dim,255);
end = pi->img + pi->dim * pi->dim;
for ( i = pi->img; i != end; ++i ) {
if ( *i == 0 )
v = 0;
else if ( *i < 10 )
v = 105 + *i * 15;
else
v = 255;
fprintf(pf,"%c",v);
}
close(pf);
}
输出图片是(一旦转换为 PNG 在这里发布)这个。注意新出现的模式: