我有一些相当大的 csv 文件(~10gb)并且想利用 dask 进行分析。但是,根据我设置要读取的 dask 对象的分区数量,我的 groupby 结果会发生变化。我的理解是 dask 利用分区来获得核外处理的好处,但它仍然会返回适当的 groupby 输出。情况似乎并非如此,我正在努力找出需要哪些替代设置。下面是一个小例子:
df = pd.DataFrame({'A': np.arange(100), 'B': np.random.randn(100), 'C': np.random.randn(100), 'Grp1': np.repeat([1, 2], 50), 'Grp2': [3, 4, 5, 6], 25)})
test_dd1 = dd.from_pandas(df, npartitions=1)
test_dd2 = dd.from_pandas(df, npartitions=2)
test_dd5 = dd.from_pandas(df, npartitions=5)
test_dd10 = dd.from_pandas(df, npartitions=10)
test_dd100 = dd.from_pandas(df, npartitions=100)
def test_func(x):
x['New_Col'] = len(x[x['B'] > 0.]) / len(x['B'])
return x
test_dd1.groupby(['Grp1', 'Grp2']).apply(test_func).compute().head()
A B C Grp1 Grp2 New_Col
0 0 -0.561376 -1.422286 1 3 0.48
1 1 -1.107799 1.075471 1 3 0.48
2 2 -0.719420 -0.574381 1 3 0.48
3 3 -1.287547 -0.749218 1 3 0.48
4 4 0.677617 -0.908667 1 3 0.48
test_dd2.groupby(['Grp1', 'Grp2']).apply(test_func).compute().head()
A B C Grp1 Grp2 New_Col
0 0 -0.561376 -1.422286 1 3 0.48
1 1 -1.107799 1.075471 1 3 0.48
2 2 -0.719420 -0.574381 1 3 0.48
3 3 -1.287547 -0.749218 1 3 0.48
4 4 0.677617 -0.908667 1 3 0.48
test_dd5.groupby(['Grp1', 'Grp2']).apply(test_func).compute().head()
A B C Grp1 Grp2 New_Col
0 0 -0.561376 -1.422286 1 3 0.45
1 1 -1.107799 1.075471 1 3 0.45
2 2 -0.719420 -0.574381 1 3 0.45
3 3 -1.287547 -0.749218 1 3 0.45
4 4 0.677617 -0.908667 1 3 0.45
test_dd10.groupby(['Grp1', 'Grp2']).apply(test_func).compute().head()
A B C Grp1 Grp2 New_Col
0 0 -0.561376 -1.422286 1 3 0.5
1 1 -1.107799 1.075471 1 3 0.5
2 2 -0.719420 -0.574381 1 3 0.5
3 3 -1.287547 -0.749218 1 3 0.5
4 4 0.677617 -0.908667 1 3 0.5
test_dd100.groupby(['Grp1', 'Grp2']).apply(test_func).compute().head()
A B C Grp1 Grp2 New_Col
0 0 -0.561376 -1.422286 1 3 0
1 1 -1.107799 1.075471 1 3 0
2 2 -0.719420 -0.574381 1 3 0
3 3 -1.287547 -0.749218 1 3 0
4 4 0.677617 -0.908667 1 3 1
df.groupby(['Grp1', 'Grp2']).apply(test_func).head()
A B C Grp1 Grp2 New_Col
0 0 -0.561376 -1.422286 1 3 0.48
1 1 -1.107799 1.075471 1 3 0.48
2 2 -0.719420 -0.574381 1 3 0.48
3 3 -1.287547 -0.749218 1 3 0.48
4 4 0.677617 -0.908667 1 3 0.48
groupby 步骤是否仅在每个分区内运行,而不是查看完整的数据帧?在这种情况下,设置 npartitions=1 是微不足道的,而且它似乎不会对性能产生太大影响,但是由于 read_csv 会自动设置一定数量的分区,您如何设置调用以确保 groupby 结果准确?
谢谢!