我想到了你的问题,我最初编写了一个例程,将日期间隔映射到一维二进制数组中,其中数组中的每个条目都是一天,连续的天是连续的条目。使用此数据结构,您可以执行膨胀和侵蚀以填充小间隙,从而合并区间,然后将合并的区间映射回日期范围。因此,我们根据您的想法使用标准光栅连接组件逻辑来解决您的问题(基于图形的连接组件也可以工作......)
这很好用,如果您真的感兴趣,我可以发布代码,但后来我想知道前一种方法与仅遍历(预排序)日期范围并将下一个合并到如果间隙很小,则为电流。
这是简单例程的代码,使用示例数据运行大约需要 120 微秒。如果您通过重复 10,000 次来扩展样本数据,则此例程在我的计算机上大约需要 1 秒。
当我对基于形态的解决方案进行计时时,它慢了大约 2 倍。在某些情况下它可能会更好地工作,但我建议我们先尝试简单,看看是否存在需要不同算法方法的真正问题。
from datetime import datetime
from datetime import timedelta
import numpy as np
问题中提供的样本数据:
SAMPLE_DATA = [['1', '08/01/2011', '08/31/2011'],
['1', '09/01/2011', '09/30/2011'],
['1', '11/01/2011', '11/30/2011'],
['1', '12/01/2011', '12/31/2011'],
['1', '01/01/2012', '01/31/2012'],
['1', '03/01/2012', '03/31/2012'],
['2', '11/11/2011', '11/30/2011'],
['2', '12/11/2011', '12/31/2011'],
['2', '01/11/2014', '01/31/2014'],
['2', '03/11/2014', '03/31/2014']]
简单的方法:
def simple_method(in_data=SAMPLE_DATA, person='1', fill_gap_days=31, printit=False):
date_format_str = "%m/%d/%Y"
dat = np.array(in_data)
dat = dat[dat[:, 0] == person, 1:] # just this person's data
# assume date intervals are already sorted by start date
new_intervals = []
cur_start = None
cur_end = None
gap_days = timedelta(days=fill_gap_days)
for (s_str, e_str) in dat:
dt_start = datetime.strptime(s_str, date_format_str)
dt_end = datetime.strptime(e_str, date_format_str)
if cur_end is None:
cur_start = dt_start
cur_end = dt_end
continue
else:
if cur_end + gap_days >= dt_start:
# merge, keep existing cur_start, extend cur_end
cur_end = dt_end
else:
# new interval, save previous and reset current to this
new_intervals.append((cur_start, cur_end))
cur_start = dt_start
cur_end = dt_end
# make sure final interval is saved
new_intervals.append((cur_start, cur_end))
if printit:
print_it(person, new_intervals, date_format_str)
return new_intervals
这是打印范围的简单漂亮打印功能。
def print_it(person, consolidated_ranges, fmt):
for (s, e) in consolidated_ranges:
print(person, s.strftime(fmt), e.strftime(fmt))
在 ipython 中运行如下。请注意,可以关闭打印结果以对计算进行计时。
In [10]: _ = simple_method(printit=True)
1 08/01/2011 09/30/2011
1 11/01/2011 03/31/2012
使用 %timeit 宏在 ipython 中运行:
In [8]: %timeit simple_method(in_data=SAMPLE_DATA)
10000 loops, best of 3: 118 µs per loop
In [9]: %timeit simple_method(in_data=SAMPLE_DATA*10000)
1 loops, best of 3: 1.06 s per loop
[编辑 2016 年 2 月 8 日:为了让长答案更长......] 正如我在回复中开头的那样,我确实创建了一个形态学/一维连接组件版本,并且在我的时间里它慢了大约 2 倍。但是为了完整起见,我将展示形态学方法,也许其他人会看到它是否有很大的加速区域。
#using same imports as previous code with one more
import calendar as cal
def make_occupancy_array(start_year, end_year):
"""
Represents the time between the start and end years, inclusively, as a 1-D array
of 'pixels', where each pixel corresponds to a day. Consecutive days are thus
mapped to consecutive pixels. We can perform morphology on this 1D array to
close small gaps between date ranges.
"""
years_days = [(yr, 366 if cal.isleap(yr) else 365) for yr in range(start_year, end_year+1)]
YD = np.array(years_days) # like [ (2011, 365), (2012, 366), ... ] in ndarray form
total_num_days = YD[:, 1].sum()
occupancy = np.zeros((total_num_days,), dtype='int')
return YD, occupancy
使用占用数组来表示时间间隔,我们需要两个函数来映射从日期到数组中的位置以及反之。
def map_date_to_position(dt, YD):
"""
Maps the datetime value to a position in the occupancy array
"""
# the start position is the offset to day 1 in the dt1,year,
# plus the day of year - 1 for dt1 (day of year is 1-based indexed)
yr = dt.year
assert yr in YD[:, 0] # guard...YD should include all years for this person's dates
position = YD[YD[:, 0] < yr, 1].sum() # the sum of the days in year before this year
position += dt.timetuple().tm_yday - 1
return position
def map_position_to_date(pos, YD):
"""
Inverse of map_date_to_position, this maps a position in the
occupancy array back to a datetime value
"""
yr_offsets = np.cumsum(YD[:, 1])
day_offsets = yr_offsets - pos
idx = np.flatnonzero(day_offsets > 0)[0]
year = YD[idx, 0]
day_of_year = pos if idx == 0 else pos - yr_offsets[idx-1]
# construct datetime as first of year plus day offset in year
dt = datetime.strptime(str(year), "%Y")
dt += timedelta(days=int(day_of_year)+1)
return dt
以下函数在给定开始日期和结束日期(包括)的情况下填充占用数组的相关部分,并可选择将范围的末尾扩展一个间隙填充边距(如 1 边膨胀)。
def set_occupancy(dt1, dt2, YD, occupancy, fill_gap_days=0):
"""
For a date range starting dt1 and ending, inclusively, dt2,
sets the corresponding 'pixels' in occupancy vector to 1.
If fill_gap_days > 0, then the end 'pixel' is extended
(dilated) by this many positions, so that we can fill
the gaps between intervals that are close to each other.
"""
pos1 = map_date_to_position(dt1, YD)
pos2 = map_date_to_position(dt2, YD) + fill_gap_days
occupancy[pos1:pos2] = 1
一旦我们在 occupancy 数组中获得了合并的间隔,我们需要将它们读回日期间隔,如果我们之前已经完成了间隙填充,则可以选择执行 1 边侵蚀。
def get_occupancy_intervals(OCC, fill_gap_days=0):
"""
Find the runs in the OCC array corresponding
to the 'dilated' consecutive positions, and then
'erode' back to the correct end dates by subtracting
the fill_gap_days.
"""
starts = np.flatnonzero(np.diff(OCC) > 0) # where runs of nonzeros start
ends = np.flatnonzero(np.diff(OCC) < 0) # where runs of nonzeros end
ends -= fill_gap_days # erode back to original length prior to dilation
return [(s, e) for (s, e) in zip(starts, ends)]
把它们放在一起...
def morphology_method(in_data=SAMPLE_DATA, person='1', fill_gap_days=31, printit=False):
date_format_str = "%m/%d/%Y"
dat = np.array(in_data)
dat = dat[dat[:, 0] == person, 1:] # just this person's data
# for the intervals of this person, get starting and ending years
# we assume the data is already sorted
#start_year = datetime.strptime(dat[0, 0], date_format_str)
#end_year = datetime.strptime(dat[-1, 1], date_format_str)
start_times = [datetime.strptime(d, date_format_str) for d in dat[:, 0]]
end_times = [datetime.strptime(d, date_format_str) for d in dat[:, 1]]
start_year = start_times[0].year
end_year = end_times[-1].year
# create the occupancy array, dilated so that each interval
# is extended by fill_gap_days to 'fill in' the small gaps
# between intervals
YD, OCC = make_occupancy_array(start_year, end_year)
for (s, e) in zip(start_times, end_times):
set_occupancy(s, e, YD, OCC, fill_gap_days)
# return the intervals from OCC after having filled gaps,
# and trim end dates back to original position.
consolidated_pos = get_occupancy_intervals(OCC, fill_gap_days)
# map positions back to date-times
consolidated_ranges = [(map_position_to_date(s, YD), map_position_to_date(e, YD)) for
(s, e) in consolidated_pos]
if printit:
print_it(person, consolidated_ranges, date_format_str)
return consolidated_ranges