4

我有一个 Python 模块,它提供调色板和处理它们的实用程序。调色板对象只是从list十六进制字符串中指定的颜色列表继承而来。调色板对象具有扩展自身以提供所需颜色的能力。想象一个包含许多不同数据集的图形:可以要求调色板将其具有的颜色数量扩展到为每个图形数据集提供唯一颜色所需的程度。它通过简单地取相邻颜色的平均值并插入这个新的平均颜色来做到这一点。

extend_palette功能有效,但它没有统一扩展调色板。例如,调色板可能如下所示:

将其扩展到 15 种颜色仍然可用:

将其扩展到 30 种颜色会使扩展算法的问题变得明显;仅在颜色列表的一端添加新颜色:

应该如何改变模块的功能extend_palette,使扩展的新颜色在调色板中分布更均匀?

代码如下(extend_palette为了方便实验,特别关注该功能和其他代码):

def clamp(x): 
    return max(0, min(x, 255))

def RGB_to_HEX(RGB_tuple):
    # This function returns a HEX string given an RGB tuple.
    r = RGB_tuple[0]
    g = RGB_tuple[1]
    b = RGB_tuple[2]
    return "#{0:02x}{1:02x}{2:02x}".format(clamp(r), clamp(g), clamp(b))

def HEX_to_RGB(HEX_string):
    # This function returns an RGB tuple given a HEX string.
    HEX = HEX_string.lstrip("#")
    HEX_length = len(HEX)
    return tuple(
        int(HEX[i:i + HEX_length // 3], 16) for i in range(
            0,
            HEX_length,
            HEX_length // 3
        )
    )

def mean_color(colors_in_HEX):
    # This function returns a HEX string that represents the mean color of a
    # list of colors represented by HEX strings.
    colors_in_RGB = []
    for color_in_HEX in colors_in_HEX:
        colors_in_RGB.append(HEX_to_RGB(color_in_HEX))
    sum_r = 0
    sum_g = 0
    sum_b = 0
    for color_in_RGB in colors_in_RGB:
        sum_r += color_in_RGB[0]
        sum_g += color_in_RGB[1]
        sum_b += color_in_RGB[2]
    mean_r = sum_r / len(colors_in_RGB)
    mean_g = sum_g / len(colors_in_RGB)
    mean_b = sum_b / len(colors_in_RGB)
    return RGB_to_HEX((mean_r, mean_g, mean_b))

class Palette(list):

    def __init__(
        self,
        name        = None, # string name
        description = None, # string description
        colors      = None, # list of colors
        *args
        ):
        super(Palette, self).__init__(*args)
        self._name          = name
        self._description   = description
        self.extend(colors)

    def name(
        self
        ):
        return self._name

    def set_name(
        self,
        name = None
        ):
        self._name = name

    def description(
        self
        ):
        return self._description

    def set_description(
        self,
        description = None
        ):
        self._description = description

    def extend_palette(
        self,
        minimum_number_of_colors_needed = 15
        ):
        colors = extend_palette(
            colors = self,
            minimum_number_of_colors_needed = minimum_number_of_colors_needed
        )
        self = colors

    def save_image_of_palette(
        self,
        filename = "palette.png"
        ):
        save_image_of_palette(
            colors   = self,
            filename = filename
        )

def extend_palette(
    colors = None, # list of HEX string colors
    minimum_number_of_colors_needed = 15
    ):
    while len(colors) < minimum_number_of_colors_needed:
        for index in range(1, len(colors), 2):
            colors.insert(index, mean_color([colors[index - 1], colors[index]]))
    return colors

def save_image_of_palette(
    colors   = None, # list of HEX string colors
    filename = "palette.png"
    ):
    import numpy
    import Image
    scale_x = 200
    scale_y = 124
    data = numpy.zeros((1, len(colors), 3), dtype = numpy.uint8)
    index = -1
    for color in colors:
        index += 1
        color_RGB = HEX_to_RGB(color)
        data[0, index] = [color_RGB[0], color_RGB[1], color_RGB[2]]
    data = numpy.repeat(data, scale_x, axis=0)
    data = numpy.repeat(data, scale_y, axis=1)
    image = Image.fromarray(data)
    image.save(filename)

# Define color palettes.
palettes = []
palettes.append(Palette(
    name        = "palette1",
    description = "primary colors for white background",
    colors      = [
                  "#fc0000",
                  "#ffae3a",
                  "#00ac00",
                  "#6665ec",
                  "#a9a9a9",
                  ]
))
palettes.append(Palette(
    name        = "palette2",
    description = "ATLAS clarity",
    colors      = [
                  "#FEFEFE",
                  "#AACCFF",
                  "#649800",
                  "#9A33CC",
                  "#EE2200",
                  ]
))

def save_images_of_palettes():
    for index, palette in enumerate(palettes):
        save_image_of_palette(
            colors   = palette,
            filename = "palette_{index}.png".format(index = index + 1)
        )

def access_palette(
    name = "palette1"
    ):
    for palette in palettes:
        if palette.name() == name:
            return palette
    return None
4

2 回答 2

3

如果您从一个简化的示例开始,我认为您遇到的问题更容易理解:

nums = [1, 100]

def extend_nums(nums, min_needed):
    while len(nums) < min_needed:
        for index in range(1, len(nums), 2):
            nums.insert(index, mean(nums[index - 1], nums[index]))
    return nums


def mean(x, y):
    return (x + y) / 2

在这里,我复制了您的代码,但使用数字而不是颜色来使事情变得更容易。这是我运行它时发生的情况:

>>> nums = [0, 100]
>>> extend_nums(nums, 5)
[0, 12.5, 25.0, 37.5, 50.0, 100]

我们有什么在这里?

  • 50 是 0 到 100 之间的平均值。
  • 25 是 0 到 50 之间的平均值。
  • 12.5 是 0 到 25 之间的平均值。
  • 37.5 是 25 到 50 之间的平均值。

奇怪,不是吗?好吧,不:我正在nums就地修改。当我插入新项目时, indexin the -loop的含义会发生变化:更改 before 和 after 。fornums[3]nums.insert(1, something)

让我们尝试在每次迭代时创建一个新列表:

def extend_nums(nums, min_needed):
    while len(nums) < min_needed:
        new_nums = []  # This new list will hold the extended nums.
        for index in range(1, len(nums)):
            new_nums.append(nums[index - 1])
            new_nums.append(mean(nums[index - 1], nums[index]))
        new_nums.append(nums[-1])
        nums = new_nums
    return nums

我们试试看:

>>> nums = [0, 100]
>>> extend_nums(nums, 5)
[0, 25.0, 50.0, 75.0, 100]

该解决方案有效(有改进的余地)。为什么?因为在我们的新for循环中,index有正确的含义。以前,我们在不移动index.

于 2016-02-01T15:01:54.960 回答
1

这段代码

while len(colors) < minimum_number_of_colors_needed:
    for index in range(1, len(colors), 2):
        colors.insert(index, mean_color([colors[index - 1], colors[index]]))

不均匀分布平均颜色。运行可以看到效果:

colors = range(5)
while len(colors) < 15:
    for index in range(1, len(colors), 2):
        colors.insert(index, 99)
print(colors)

产生

[0, 99, 99, 99, 99, 99, 99, 99, 1, 99, 99, 99, 2, 3, 4]

以 99 表示的方法太多,放在开头附近,而没有放在结尾附近。


令人高兴的是,既然你有 numpy,你可以使用它np.interp来均匀地插入颜色。例如,如果你有一个数据点为 (0, 10), (0.5, 20), (1, 30) 的函数,那么你可以在 x = [0, 0.33, 0.67, 1] 处插值以找到对应的 y价值观:

In [80]: np.interp([0, 0.33, 0.67, 1], [0, 0.5, 1], [10, 20, 30])
Out[80]: array([ 10. ,  16.6,  23.4,  30. ])

由于np.interp仅对一维数组进行操作,我们可以将其分别应用于每个 RGB 通道:

[np.interp(np.linspace(0,1,min_colors), np.linspace(0,1,ncolors), self.rgb[:,i]) 
 for i in range(nchannels)])

例如,

import numpy as np
import Image

def RGB_to_HEX(RGB_tuple):
    """
    Return a HEX string given an RGB tuple.
    """
    return "#{0:02x}{1:02x}{2:02x}".format(*np.clip(RGB_tuple, 0, 255))


def HEX_to_RGB(HEX_string):
    """
    Return an RGB tuple given a HEX string.
    """
    HEX = HEX_string.lstrip("#")
    HEX_length = len(HEX)
    return tuple(
        int(HEX[i:i + HEX_length // 3], 16) for i in range(
            0,
            HEX_length,
            HEX_length // 3 ))

class Palette(object):

    def __init__(self, name=None, description=None, colors=None, *args):
        super(Palette, self).__init__(*args)
        self.name = name
        self.description = description
        self.rgb = np.array(colors)

    @classmethod
    def from_hex(cls, name=None, description=None, colors=None, *args):
        colors = np.array([HEX_to_RGB(c) for c in colors])
        return cls(name, description, colors, *args)

    def to_hex(self):
        return [RGB_to_HEX(color) for color in self.rgb]

    def extend_palette(self, min_colors=15):
        ncolors, nchannels = self.rgb.shape
        if ncolors >= min_colors:
            return self.rgb

        return np.column_stack(
            [np.interp(
                np.linspace(0,1,min_colors), np.linspace(0,1,ncolors), self.rgb[:,i]) 
             for i in range(nchannels)])

def save_image_of_palette(rgb, filename="palette.png"):
    scale_x = 200
    scale_y = 124
    data = (np.kron(rgb[np.newaxis,...], np.ones((scale_x, scale_y, 1)))
            .astype(np.uint8))
    image = Image.fromarray(data)
    image.save(filename)


# Define color palettes.
palettes = []
palettes.append(Palette.from_hex(
    name="palette1",
    description="primary colors for white background",
    colors=[
        "#fc0000",
        "#ffae3a",
        "#00ac00",
        "#6665ec",
        "#a9a9a9", ]))
palettes.append(Palette.from_hex(
    name="palette2",
    description="ATLAS clarity",
    colors=[
        "#FEFEFE",
        "#AACCFF",
        "#649800",
        "#9A33CC",
        "#EE2200",]))
palettes = {p.name:p for p in palettes}


p = palettes['palette1']
save_image_of_palette(p.extend_palette(), '/tmp/out.png')

产量 在此处输入图像描述


请注意,您可能会发现在 HSV 颜色空间(而不是在 RGB 颜色空间)中进行插值会产生更好的结果

于 2016-02-01T15:07:59.610 回答