2

I'm trying to perform a simple task in spark dataframe (python) which is create new dataframe by selecting specific column and nested columns from another dataframe for example :

df.printSchema()
root
 |-- time_stamp: long (nullable = true)
 |-- country: struct (nullable = true)
 |    |-- code: string (nullable = true)
 |    |-- id: long (nullable = true)
 |    |-- time_zone: string (nullable = true)
 |-- event_name: string (nullable = true)
 |-- order: struct (nullable = true)
 |    |-- created_at: string (nullable = true)
 |    |-- creation_type: struct (nullable = true)
 |    |    |-- id: long (nullable = true)
 |    |    |-- name: string (nullable = true)
 |    |-- destination: struct (nullable = true)
 |    |    |-- state: string (nullable = true)
 |    |-- ordering_user: struct (nullable = true)
 |    |    |-- cancellation_score: long (nullable = true)
 |    |    |-- id: long (nullable = true)
 |    |    |-- is_test: boolean (nullable = true)

df2=df.sqlContext.sql("""select a.country_code as country_code,
a.order_destination_state as order_destination_state,
a.order_ordering_user_id as order_ordering_user_id,
a.order_ordering_user_is_test as order_ordering_user_is_test,
a.time_stamp as time_stamp
from
(select
flat_order_creation.order.destination.state as order_destination_state,
flat_order_creation.order.ordering_user.id as order_ordering_user_id,
flat_order_creation.order.ordering_user.is_test as   order_ordering_user_is_test,
flat_order_creation.time_stamp as time_stamp
from flat_order_creation) a""")

and I get the following error:

Traceback (most recent call last):
  File "/home/hadoop/scripts/orders_all.py", line 180, in <module>
    df2=sqlContext.sql(q)
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/context.py", line 552, in sql
  File "/usr/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 36, in deco
  File "/usr/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o60.sql.
: java.lang.RuntimeException: [6.21] failure: ``*'' expected but `order' found

flat_order_creation.order.destination.state as order_destination_state,

I'm using spark-submit with master in local mode to run the this code. it important to mention the when I'm connecting to pyspark shell and run the code (line by line) it works , but when submitting it (even in local mode) it fails. another thing is important to mention is that when selecting a non nested field it works as well. I'm using spark 1.5.2 on EMR (version 4.2.0)

4

1 回答 1

4

如果没有最小、完整和可验证的示例,我只能猜测,但看起来您SparkContext在交互式 shell 和独立程序中使用了不同的实现。

只要使用sqlContextshell 中提供的 Hive 支持构建 Spark 二进制文件,它就是一个HiveContext. 除了其他区别之外,它提供了比普通的SQLContext. 您可以轻松地重现您的问题,如下所示:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveContext

val conf: SparkConf = ???
val sc: SparkContext = ???
val query = "SELECT df.foobar.order FROM df"

val hiveContext: SQLContext = new HiveContext(sc)
val sqlContext: SQLContext = new SQLContext(sc)
val json = sc.parallelize(Seq("""{"foobar": {"order": 1}}"""))

sqlContext.read.json(json).registerTempTable("df")
sqlContext.sql(query).show
// java.lang.RuntimeException: [1.18] failure: ``*'' expected but `order' found
// ...

hiveContext.read.json(json).registerTempTable("df")
hiveContext.sql(query)
// org.apache.spark.sql.DataFrame = [order: bigint]

sqlContextHiveContext独立程序中初始化应该可以解决问题:

from pyspark.sql import HiveContext

sqlContext = HiveContext(sc) 

df = sqlContext.createDataFrame(...)
df.registerTempTable("flat_order_creation")

sqlContext.sql(...)

重要的是要注意问题不是嵌套本身,而是使用ORDER关键字作为列名。因此,如果 usingHiveContext不是一个选项,只需将字段名称更改为其他名称。

于 2016-01-26T14:12:39.527 回答