我试图证明这个功能,但徒劳无功。我也在使用另一个功能,但我证明了这一点。
有人可以帮我吗?
I'm using Frama-C Sodium version with Alt-ergo 3 as prover.
Given a not-empty string x. An integer number p such that
0 < p ≤|x| is meant to be "a period of x" if
x[i] = x[i + p]
for i = 0, 1, ... , |x| − p − 1.
Note that, for each not-empty string, the length of the string
is a period of itself. In this way, every not-empty string
has got at least one period. So is well formed the concept of minimum
period of string x, denoted by per(x):
per(x) = min { p | p is period of x }.
Write a C function
unsigned per(const char x[], unsigned l)
that, given a string x of length l, returns per(x).
这是我到目前为止编写的代码和规范:
/*@
requires l > 0;
requires p >= 0;
behavior zero:
assumes p == l;
ensures \result == 1;
behavior one:
assumes l != p && (l%p) == 0;
assumes \forall int i; 0 <= i < l-p-1 ==> x[i] == x[i+p];
ensures \result == 1;
behavior two:
assumes l != p && (l%p) == 0;
assumes !(\forall int i; 0 <= i < l-p-1 ==> x[i] == x[i+p]);
ensures \result == 0;
behavior three:
assumes p != l && l%p != 0;
ensures \result == 0;
complete behaviors;
disjoint behaviors;
*/
unsigned has_period(const char x[], unsigned int p, unsigned l) {
if (p == l) return 1;
if ((l % p) != 0) return 0;
/*@
loop assigns i;
loop invariant \forall int j; 0 <= j < i ==> (x[j] == x[j+p]);
loop invariant i <= l-p-1;
loop invariant i >= 0;
*/
for (int i = 0 ; i < l-p-1 ; ++i) {
if (x[i] != x[i + p])
return 0;
}
return 1;
}
/*
predicate has_period(char* x, unsigned int p, unsigned l) =
\forall int i; i < (l-p-1) ==> x[i] == x[i+p];
*/
/*@
requires l > 0;
requires \valid(x+(0..l-1));
ensures 1 <= \result <= l;
ensures \forall unsigned int i; i < (l-\result-1) ==> x[i] == x[i+\result];
ensures \forall unsigned int p; 1 <= p < \result ==> !(\forall int i; i < (l-p-1) ==> x[i] == x[i+p]);
*/
unsigned per(const char x[], unsigned l) {
int p = 1;
/*@
loop assigns p;
loop invariant 1 <= p <= l;
loop invariant \forall unsigned j; 1 <= j < p ==> !(\forall int i; i < (l-j-1) ==> x[i] == x[i+j] || (l%p) == 0);
loop invariant p >= 0;
*/
while(p < l && !has_period(x,p,l))
++p;
return p;
}