我正在Windows机器上尝试python的线程和多处理。但是python给出了以下消息。
RuntimeError:
Attempt to start a new process before the current process
has finished its bootstrapping phase.
This probably means that you are on Windows and you have
forgotten to use the proper idiom in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce a Windows executable.
在windows中 if name == 'main': 因此是必须完成的,我有一个实现如下,但是在解决之后会发生这样的错误或者这是我不知道的情况。请帮我。
import random
import numpy
import matplotlib.pyplot
import time
import multiprocessing
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
# from docutils.utils.punctuation_chars import delimiters
IND_INIT_SIZE = 3000
# MIN_ENERGY = 237178.013392/3600
MIN_ENERGY =7255
MIN_POWER = 303.4465137486
NBR_ITEMS = 3000
# Create the item dictionary: item name is an integer, and value is
# a (weight, value) 2-uple.
items = {}
# Create random items and store them in the items' dictionary.
for i in range(NBR_ITEMS):
items[i] = random.choice([[10,5],[10,10]])
creator.create("Fitness", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", set, fitness=creator.Fitness)
toolbox = base.Toolbox()
# Attribute generator
toolbox.register("attr_item", random.randrange, NBR_ITEMS)
# Structure initializers
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_item, IND_INIT_SIZE)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def evalKnapsack(individual):
energy = 0.0
power = 0.0
for item in individual:
energy += items[item][1]
power += items[item][0]
if power < MIN_POWER or energy < MIN_ENERGY:
return 100000000000,1000000000000
return energy, power
def cxSet(ind1, ind2):
"""Apply a crossover operation on input sets. The first child is the
intersection of the two sets, the second child is the difference of the
two sets.
"""
temp = set(ind1) # Used in order to keep type
ind1 &= ind2 # Intersection (inplace)
ind2 ^= temp # Symmetric Difference (inplace)
return ind1, ind2
def mutSet(individual):
"""Mutation that pops or add an element."""
for var in range(0,3000):
if random.random() < 0.5:
if len(individual) > 0: # We cannot pop from an empty set
individual.remove(random.choice(sorted(tuple(individual))))
else:
individual.add(random.randrange(NBR_ITEMS))
return individual,
toolbox.register("evaluate", evalKnapsack)
toolbox.register("mate", cxSet)
toolbox.register("mutate", mutSet)
toolbox.register("select", tools.selSPEA2)
pool = multiprocessing.Pool(4)
toolbox.register("map", pool.map)
def main():
# random.seed(64)
NGEN = 5
MU = 75
LAMBDA = 75
CXPB = 0.6
MUTPB = 0.3
pop = toolbox.population(n=MU)
hof = tools.ParetoFront()
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats,
halloffame=hof)
return pop, stats, hof
if __name__ == '__main__':
for var in range(0,5):
start = time.time()
pop, stats, hof= main()
lischp=[]
lisclp=[]
libatthp=[]
libattlp=[]
ligoukei=[]
for ind in hof:
itemslist=[]
print ind, ind.fitness
for k in ind:
itemslist.append(items[k])
schpkazu=itemslist.count([10,5])
lischp.append(schpkazu)
battlpkazu=itemslist.count([10,10])
libattlp.append(battlpkazu)
print libatthp
print lischp
print libattlp
print lisclp
ligoukei.append(ind.fitness)
print ligoukei
#保存
with open('battlpcazu.csv',mode='a')as fb:
numpy.savetxt(fb,libattlp,fmt="%.0f",delimiter=",")
with open('schpcazu.csv',mode='a')as fc:
numpy.savetxt(fc,lischp,fmt="%.0f",delimiter=",")
elapsed_time = time.time() - start
print ("elapsed_time:{0}".format(elapsed_time)) + "[sec]"