这是rio中提到的创新之一(完全披露:我写了这个包)。基本上,它提供了多种导入变量标签的方式,包括haven的做事方式和foreign的方式。这是一个简单的例子:
首先制作一个可重现的示例:
> library("rio")
> export(iris, "iris.dta")
foreign::read.dta()
使用(通过)导入rio::import()
:
> str(import("iris.dta", haven = FALSE))
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "datalabel")= chr ""
- attr(*, "time.stamp")= chr "15 Jan 2016 20:05"
- attr(*, "formats")= chr "" "" "" "" ...
- attr(*, "types")= int 255 255 255 255 253
- attr(*, "val.labels")= chr "" "" "" "" ...
- attr(*, "var.labels")= chr "" "" "" "" ...
- attr(*, "version")= int -7
- attr(*, "label.table")=List of 1
..$ Species: Named int 1 2 3
.. ..- attr(*, "names")= chr "setosa" "versicolor" "virginica"
使用其本机变量属性读取,haven::read_dta()
因为属性存储在 data.frame 级别而不是变量级别:
> str(import("iris.dta", haven = TRUE, column.labels = TRUE))
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species :Class 'labelled' atomic [1:150] 1 1 1 1 1 1 1 1 1 1 ...
.. ..- attr(*, "labels")= Named int [1:3] 1 2 3
.. .. ..- attr(*, "names")= chr [1:3] "setosa" "versicolor" "virginica"
haven::read_dta()
使用我们(rio 开发人员)发现更方便的替代方法阅读:
> str(import("iris.dta", haven = TRUE))
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "var.labels")=List of 5
..$ Sepal.Length: NULL
..$ Sepal.Width : NULL
..$ Petal.Length: NULL
..$ Petal.Width : NULL
..$ Species : NULL
- attr(*, "label.table")=List of 5
..$ Sepal.Length: NULL
..$ Sepal.Width : NULL
..$ Petal.Length: NULL
..$ Petal.Width : NULL
..$ Species : Named int 1 2 3
.. ..- attr(*, "names")= chr "setosa" "versicolor" "virginica"
通过将属性移动到 data.frame 的级别,使用attr(data, "label.var")
等更容易访问它们,而不是挖掘每个变量的属性。
注意:属性的值将为 NULL,因为我只是将本机 R 数据集写入本地文件以使其可重现。