对于那些说它是安全的人来说,他们通常是正确的。对于特定问题,“双重”散列(或逻辑扩展,迭代散列函数)如果做得对,是绝对安全的。
对于那些说它不安全的人,他们在这种情况下是正确的。问题中发布的代码不安全。让我们谈谈为什么:
$hashed_password1 = md5( md5( plaintext_password ) );
$hashed_password2 = md5( plaintext_password );
我们关注哈希函数的两个基本属性:
Pre-Image Resistance - 给定一个散列$h
,应该很难找到$m
这样的消息$h === hash($m)
Second-Pre-Image Resistance - 给定一条消息$m1
,应该很难找到不同的消息$m2
,这样hash($m1) === hash($m2)
碰撞阻力- 应该很难找到一对($m1, $m2)
这样的消息hash($m1) === hash($m2)
(请注意,这类似于 Second-Pre-Image 阻力,但不同之处在于攻击者可以控制这两个消息)......
对于密码的存储,我们真正关心的是Pre-Image Resistance。另外两个将没有实际意义,因为$m1
我们试图保护用户的密码。因此,如果攻击者已经拥有它,那么哈希就没有什么可以保护的了……
免责声明
接下来的一切都是基于我们所关心的前提是Pre-Image Resistance。散列函数的其他两个基本属性可能不会(并且通常不会)以相同的方式成立。所以这篇文章中的结论只适用于使用哈希函数存储密码的情况。它们一般不适用...
让我们开始吧
为了便于讨论,让我们发明自己的哈希函数:
function ourHash($input) {
$result = 0;
for ($i = 0; $i < strlen($input); $i++) {
$result += ord($input[$i]);
}
return (string) ($result % 256);
}
现在应该很明显这个哈希函数做了什么。它将输入的每个字符的 ASCII 值相加,然后将该结果与 256 取模。
所以让我们测试一下:
var_dump(
ourHash('abc'), // string(2) "38"
ourHash('def'), // string(2) "47"
ourHash('hij'), // string(2) "59"
ourHash('klm') // string(2) "68"
);
现在,让我们看看如果我们围绕一个函数运行几次会发生什么:
$tests = array(
"abc",
"def",
"hij",
"klm",
);
foreach ($tests as $test) {
$hash = $test;
for ($i = 0; $i < 100; $i++) {
$hash = ourHash($hash);
}
echo "Hashing $test => $hash\n";
}
输出:
Hashing abc => 152
Hashing def => 152
Hashing hij => 155
Hashing klm => 155
嗯,哇。我们已经产生了碰撞!!!让我们试着看看为什么:
这是对每个可能的哈希输出的字符串进行哈希处理的输出:
Hashing 0 => 48
Hashing 1 => 49
Hashing 2 => 50
Hashing 3 => 51
Hashing 4 => 52
Hashing 5 => 53
Hashing 6 => 54
Hashing 7 => 55
Hashing 8 => 56
Hashing 9 => 57
Hashing 10 => 97
Hashing 11 => 98
Hashing 12 => 99
Hashing 13 => 100
Hashing 14 => 101
Hashing 15 => 102
Hashing 16 => 103
Hashing 17 => 104
Hashing 18 => 105
Hashing 19 => 106
Hashing 20 => 98
Hashing 21 => 99
Hashing 22 => 100
Hashing 23 => 101
Hashing 24 => 102
Hashing 25 => 103
Hashing 26 => 104
Hashing 27 => 105
Hashing 28 => 106
Hashing 29 => 107
Hashing 30 => 99
Hashing 31 => 100
Hashing 32 => 101
Hashing 33 => 102
Hashing 34 => 103
Hashing 35 => 104
Hashing 36 => 105
Hashing 37 => 106
Hashing 38 => 107
Hashing 39 => 108
Hashing 40 => 100
Hashing 41 => 101
Hashing 42 => 102
Hashing 43 => 103
Hashing 44 => 104
Hashing 45 => 105
Hashing 46 => 106
Hashing 47 => 107
Hashing 48 => 108
Hashing 49 => 109
Hashing 50 => 101
Hashing 51 => 102
Hashing 52 => 103
Hashing 53 => 104
Hashing 54 => 105
Hashing 55 => 106
Hashing 56 => 107
Hashing 57 => 108
Hashing 58 => 109
Hashing 59 => 110
Hashing 60 => 102
Hashing 61 => 103
Hashing 62 => 104
Hashing 63 => 105
Hashing 64 => 106
Hashing 65 => 107
Hashing 66 => 108
Hashing 67 => 109
Hashing 68 => 110
Hashing 69 => 111
Hashing 70 => 103
Hashing 71 => 104
Hashing 72 => 105
Hashing 73 => 106
Hashing 74 => 107
Hashing 75 => 108
Hashing 76 => 109
Hashing 77 => 110
Hashing 78 => 111
Hashing 79 => 112
Hashing 80 => 104
Hashing 81 => 105
Hashing 82 => 106
Hashing 83 => 107
Hashing 84 => 108
Hashing 85 => 109
Hashing 86 => 110
Hashing 87 => 111
Hashing 88 => 112
Hashing 89 => 113
Hashing 90 => 105
Hashing 91 => 106
Hashing 92 => 107
Hashing 93 => 108
Hashing 94 => 109
Hashing 95 => 110
Hashing 96 => 111
Hashing 97 => 112
Hashing 98 => 113
Hashing 99 => 114
Hashing 100 => 145
Hashing 101 => 146
Hashing 102 => 147
Hashing 103 => 148
Hashing 104 => 149
Hashing 105 => 150
Hashing 106 => 151
Hashing 107 => 152
Hashing 108 => 153
Hashing 109 => 154
Hashing 110 => 146
Hashing 111 => 147
Hashing 112 => 148
Hashing 113 => 149
Hashing 114 => 150
Hashing 115 => 151
Hashing 116 => 152
Hashing 117 => 153
Hashing 118 => 154
Hashing 119 => 155
Hashing 120 => 147
Hashing 121 => 148
Hashing 122 => 149
Hashing 123 => 150
Hashing 124 => 151
Hashing 125 => 152
Hashing 126 => 153
Hashing 127 => 154
Hashing 128 => 155
Hashing 129 => 156
Hashing 130 => 148
Hashing 131 => 149
Hashing 132 => 150
Hashing 133 => 151
Hashing 134 => 152
Hashing 135 => 153
Hashing 136 => 154
Hashing 137 => 155
Hashing 138 => 156
Hashing 139 => 157
Hashing 140 => 149
Hashing 141 => 150
Hashing 142 => 151
Hashing 143 => 152
Hashing 144 => 153
Hashing 145 => 154
Hashing 146 => 155
Hashing 147 => 156
Hashing 148 => 157
Hashing 149 => 158
Hashing 150 => 150
Hashing 151 => 151
Hashing 152 => 152
Hashing 153 => 153
Hashing 154 => 154
Hashing 155 => 155
Hashing 156 => 156
Hashing 157 => 157
Hashing 158 => 158
Hashing 159 => 159
Hashing 160 => 151
Hashing 161 => 152
Hashing 162 => 153
Hashing 163 => 154
Hashing 164 => 155
Hashing 165 => 156
Hashing 166 => 157
Hashing 167 => 158
Hashing 168 => 159
Hashing 169 => 160
Hashing 170 => 152
Hashing 171 => 153
Hashing 172 => 154
Hashing 173 => 155
Hashing 174 => 156
Hashing 175 => 157
Hashing 176 => 158
Hashing 177 => 159
Hashing 178 => 160
Hashing 179 => 161
Hashing 180 => 153
Hashing 181 => 154
Hashing 182 => 155
Hashing 183 => 156
Hashing 184 => 157
Hashing 185 => 158
Hashing 186 => 159
Hashing 187 => 160
Hashing 188 => 161
Hashing 189 => 162
Hashing 190 => 154
Hashing 191 => 155
Hashing 192 => 156
Hashing 193 => 157
Hashing 194 => 158
Hashing 195 => 159
Hashing 196 => 160
Hashing 197 => 161
Hashing 198 => 162
Hashing 199 => 163
Hashing 200 => 146
Hashing 201 => 147
Hashing 202 => 148
Hashing 203 => 149
Hashing 204 => 150
Hashing 205 => 151
Hashing 206 => 152
Hashing 207 => 153
Hashing 208 => 154
Hashing 209 => 155
Hashing 210 => 147
Hashing 211 => 148
Hashing 212 => 149
Hashing 213 => 150
Hashing 214 => 151
Hashing 215 => 152
Hashing 216 => 153
Hashing 217 => 154
Hashing 218 => 155
Hashing 219 => 156
Hashing 220 => 148
Hashing 221 => 149
Hashing 222 => 150
Hashing 223 => 151
Hashing 224 => 152
Hashing 225 => 153
Hashing 226 => 154
Hashing 227 => 155
Hashing 228 => 156
Hashing 229 => 157
Hashing 230 => 149
Hashing 231 => 150
Hashing 232 => 151
Hashing 233 => 152
Hashing 234 => 153
Hashing 235 => 154
Hashing 236 => 155
Hashing 237 => 156
Hashing 238 => 157
Hashing 239 => 158
Hashing 240 => 150
Hashing 241 => 151
Hashing 242 => 152
Hashing 243 => 153
Hashing 244 => 154
Hashing 245 => 155
Hashing 246 => 156
Hashing 247 => 157
Hashing 248 => 158
Hashing 249 => 159
Hashing 250 => 151
Hashing 251 => 152
Hashing 252 => 153
Hashing 253 => 154
Hashing 254 => 155
Hashing 255 => 156
注意数字更高的趋势。事实证明这是我们的死路一条。运行哈希 4 次($hash = ourHash($hash)`,对于每个元素)最终给我们:
Hashing 0 => 153
Hashing 1 => 154
Hashing 2 => 155
Hashing 3 => 156
Hashing 4 => 157
Hashing 5 => 158
Hashing 6 => 150
Hashing 7 => 151
Hashing 8 => 152
Hashing 9 => 153
Hashing 10 => 157
Hashing 11 => 158
Hashing 12 => 150
Hashing 13 => 154
Hashing 14 => 155
Hashing 15 => 156
Hashing 16 => 157
Hashing 17 => 158
Hashing 18 => 150
Hashing 19 => 151
Hashing 20 => 158
Hashing 21 => 150
Hashing 22 => 154
Hashing 23 => 155
Hashing 24 => 156
Hashing 25 => 157
Hashing 26 => 158
Hashing 27 => 150
Hashing 28 => 151
Hashing 29 => 152
Hashing 30 => 150
Hashing 31 => 154
Hashing 32 => 155
Hashing 33 => 156
Hashing 34 => 157
Hashing 35 => 158
Hashing 36 => 150
Hashing 37 => 151
Hashing 38 => 152
Hashing 39 => 153
Hashing 40 => 154
Hashing 41 => 155
Hashing 42 => 156
Hashing 43 => 157
Hashing 44 => 158
Hashing 45 => 150
Hashing 46 => 151
Hashing 47 => 152
Hashing 48 => 153
Hashing 49 => 154
Hashing 50 => 155
Hashing 51 => 156
Hashing 52 => 157
Hashing 53 => 158
Hashing 54 => 150
Hashing 55 => 151
Hashing 56 => 152
Hashing 57 => 153
Hashing 58 => 154
Hashing 59 => 155
Hashing 60 => 156
Hashing 61 => 157
Hashing 62 => 158
Hashing 63 => 150
Hashing 64 => 151
Hashing 65 => 152
Hashing 66 => 153
Hashing 67 => 154
Hashing 68 => 155
Hashing 69 => 156
Hashing 70 => 157
Hashing 71 => 158
Hashing 72 => 150
Hashing 73 => 151
Hashing 74 => 152
Hashing 75 => 153
Hashing 76 => 154
Hashing 77 => 155
Hashing 78 => 156
Hashing 79 => 157
Hashing 80 => 158
Hashing 81 => 150
Hashing 82 => 151
Hashing 83 => 152
Hashing 84 => 153
Hashing 85 => 154
Hashing 86 => 155
Hashing 87 => 156
Hashing 88 => 157
Hashing 89 => 158
Hashing 90 => 150
Hashing 91 => 151
Hashing 92 => 152
Hashing 93 => 153
Hashing 94 => 154
Hashing 95 => 155
Hashing 96 => 156
Hashing 97 => 157
Hashing 98 => 158
Hashing 99 => 150
Hashing 100 => 154
Hashing 101 => 155
Hashing 102 => 156
Hashing 103 => 157
Hashing 104 => 158
Hashing 105 => 150
Hashing 106 => 151
Hashing 107 => 152
Hashing 108 => 153
Hashing 109 => 154
Hashing 110 => 155
Hashing 111 => 156
Hashing 112 => 157
Hashing 113 => 158
Hashing 114 => 150
Hashing 115 => 151
Hashing 116 => 152
Hashing 117 => 153
Hashing 118 => 154
Hashing 119 => 155
Hashing 120 => 156
Hashing 121 => 157
Hashing 122 => 158
Hashing 123 => 150
Hashing 124 => 151
Hashing 125 => 152
Hashing 126 => 153
Hashing 127 => 154
Hashing 128 => 155
Hashing 129 => 156
Hashing 130 => 157
Hashing 131 => 158
Hashing 132 => 150
Hashing 133 => 151
Hashing 134 => 152
Hashing 135 => 153
Hashing 136 => 154
Hashing 137 => 155
Hashing 138 => 156
Hashing 139 => 157
Hashing 140 => 158
Hashing 141 => 150
Hashing 142 => 151
Hashing 143 => 152
Hashing 144 => 153
Hashing 145 => 154
Hashing 146 => 155
Hashing 147 => 156
Hashing 148 => 157
Hashing 149 => 158
Hashing 150 => 150
Hashing 151 => 151
Hashing 152 => 152
Hashing 153 => 153
Hashing 154 => 154
Hashing 155 => 155
Hashing 156 => 156
Hashing 157 => 157
Hashing 158 => 158
Hashing 159 => 159
Hashing 160 => 151
Hashing 161 => 152
Hashing 162 => 153
Hashing 163 => 154
Hashing 164 => 155
Hashing 165 => 156
Hashing 166 => 157
Hashing 167 => 158
Hashing 168 => 159
Hashing 169 => 151
Hashing 170 => 152
Hashing 171 => 153
Hashing 172 => 154
Hashing 173 => 155
Hashing 174 => 156
Hashing 175 => 157
Hashing 176 => 158
Hashing 177 => 159
Hashing 178 => 151
Hashing 179 => 152
Hashing 180 => 153
Hashing 181 => 154
Hashing 182 => 155
Hashing 183 => 156
Hashing 184 => 157
Hashing 185 => 158
Hashing 186 => 159
Hashing 187 => 151
Hashing 188 => 152
Hashing 189 => 153
Hashing 190 => 154
Hashing 191 => 155
Hashing 192 => 156
Hashing 193 => 157
Hashing 194 => 158
Hashing 195 => 159
Hashing 196 => 151
Hashing 197 => 152
Hashing 198 => 153
Hashing 199 => 154
Hashing 200 => 155
Hashing 201 => 156
Hashing 202 => 157
Hashing 203 => 158
Hashing 204 => 150
Hashing 205 => 151
Hashing 206 => 152
Hashing 207 => 153
Hashing 208 => 154
Hashing 209 => 155
Hashing 210 => 156
Hashing 211 => 157
Hashing 212 => 158
Hashing 213 => 150
Hashing 214 => 151
Hashing 215 => 152
Hashing 216 => 153
Hashing 217 => 154
Hashing 218 => 155
Hashing 219 => 156
Hashing 220 => 157
Hashing 221 => 158
Hashing 222 => 150
Hashing 223 => 151
Hashing 224 => 152
Hashing 225 => 153
Hashing 226 => 154
Hashing 227 => 155
Hashing 228 => 156
Hashing 229 => 157
Hashing 230 => 158
Hashing 231 => 150
Hashing 232 => 151
Hashing 233 => 152
Hashing 234 => 153
Hashing 235 => 154
Hashing 236 => 155
Hashing 237 => 156
Hashing 238 => 157
Hashing 239 => 158
Hashing 240 => 150
Hashing 241 => 151
Hashing 242 => 152
Hashing 243 => 153
Hashing 244 => 154
Hashing 245 => 155
Hashing 246 => 156
Hashing 247 => 157
Hashing 248 => 158
Hashing 249 => 159
Hashing 250 => 151
Hashing 251 => 152
Hashing 252 => 153
Hashing 253 => 154
Hashing 254 => 155
Hashing 255 => 156
我们已经将自己缩小到 8 个值......这很糟糕......我们的原始函数映射S(∞)
到S(256)
. 也就是说,我们创建了一个映射$input
到$output
.
由于我们有一个满射函数,我们不能保证任何输入子集的映射都不会发生冲突(实际上,实际上它们会发生冲突)。
这就是这里发生的事情!我们的功能很糟糕,但这不是它起作用的原因(这就是它工作得如此迅速和如此完整的原因)。
同样的事情发生在MD5
. 它映射S(∞)
到S(2^128)
. 由于无法保证 runningMD5(S(output))
将是Injective,这意味着它不会发生冲突。
TL/DR 部分
因此,由于md5
直接将输出反馈回会产生碰撞,因此每次迭代都会增加碰撞的机会。然而,这是一个线性增加,这意味着虽然结果集2^128
减少了,但它并没有显着减少到足以成为关键缺陷的速度。
所以,
$output = md5($input); // 2^128 possibilities
$output = md5($output); // < 2^128 possibilities
$output = md5($output); // < 2^128 possibilities
$output = md5($output); // < 2^128 possibilities
$output = md5($output); // < 2^128 possibilities
你迭代的次数越多,减少的越多。
修复
对我们来说幸运的是,有一个简单的方法可以解决这个问题:将一些东西反馈到进一步的迭代中:
$output = md5($input); // 2^128 possibilities
$output = md5($input . $output); // 2^128 possibilities
$output = md5($input . $output); // 2^128 possibilities
$output = md5($input . $output); // 2^128 possibilities
$output = md5($input . $output); // 2^128 possibilities
请注意,对于每个单独的值,进一步的迭代不是 2^128 $input
。这意味着我们可能能够生成$input
仍然沿线碰撞的值(因此将在远低于2^128
可能输出的情况下稳定或产生共鸣)。但是一般情况下$input
仍然与单轮一样强大。
等等,是吗?ourHash()
让我们用我们的函数来测试一下。切换到$hash = ourHash($input . $hash);
, 进行 100 次迭代:
Hashing 0 => 201
Hashing 1 => 212
Hashing 2 => 199
Hashing 3 => 201
Hashing 4 => 203
Hashing 5 => 205
Hashing 6 => 207
Hashing 7 => 209
Hashing 8 => 211
Hashing 9 => 204
Hashing 10 => 251
Hashing 11 => 147
Hashing 12 => 251
Hashing 13 => 148
Hashing 14 => 253
Hashing 15 => 0
Hashing 16 => 1
Hashing 17 => 2
Hashing 18 => 161
Hashing 19 => 163
Hashing 20 => 147
Hashing 21 => 251
Hashing 22 => 148
Hashing 23 => 253
Hashing 24 => 0
Hashing 25 => 1
Hashing 26 => 2
Hashing 27 => 161
Hashing 28 => 163
Hashing 29 => 8
Hashing 30 => 251
Hashing 31 => 148
Hashing 32 => 253
Hashing 33 => 0
Hashing 34 => 1
Hashing 35 => 2
Hashing 36 => 161
Hashing 37 => 163
Hashing 38 => 8
Hashing 39 => 4
Hashing 40 => 148
Hashing 41 => 253
Hashing 42 => 0
Hashing 43 => 1
Hashing 44 => 2
Hashing 45 => 161
Hashing 46 => 163
Hashing 47 => 8
Hashing 48 => 4
Hashing 49 => 9
Hashing 50 => 253
Hashing 51 => 0
Hashing 52 => 1
Hashing 53 => 2
Hashing 54 => 161
Hashing 55 => 163
Hashing 56 => 8
Hashing 57 => 4
Hashing 58 => 9
Hashing 59 => 11
Hashing 60 => 0
Hashing 61 => 1
Hashing 62 => 2
Hashing 63 => 161
Hashing 64 => 163
Hashing 65 => 8
Hashing 66 => 4
Hashing 67 => 9
Hashing 68 => 11
Hashing 69 => 4
Hashing 70 => 1
Hashing 71 => 2
Hashing 72 => 161
Hashing 73 => 163
Hashing 74 => 8
Hashing 75 => 4
Hashing 76 => 9
Hashing 77 => 11
Hashing 78 => 4
Hashing 79 => 3
Hashing 80 => 2
Hashing 81 => 161
Hashing 82 => 163
Hashing 83 => 8
Hashing 84 => 4
Hashing 85 => 9
Hashing 86 => 11
Hashing 87 => 4
Hashing 88 => 3
Hashing 89 => 17
Hashing 90 => 161
Hashing 91 => 163
Hashing 92 => 8
Hashing 93 => 4
Hashing 94 => 9
Hashing 95 => 11
Hashing 96 => 4
Hashing 97 => 3
Hashing 98 => 17
Hashing 99 => 13
Hashing 100 => 246
Hashing 101 => 248
Hashing 102 => 49
Hashing 103 => 44
Hashing 104 => 255
Hashing 105 => 198
Hashing 106 => 43
Hashing 107 => 51
Hashing 108 => 202
Hashing 109 => 2
Hashing 110 => 248
Hashing 111 => 49
Hashing 112 => 44
Hashing 113 => 255
Hashing 114 => 198
Hashing 115 => 43
Hashing 116 => 51
Hashing 117 => 202
Hashing 118 => 2
Hashing 119 => 51
Hashing 120 => 49
Hashing 121 => 44
Hashing 122 => 255
Hashing 123 => 198
Hashing 124 => 43
Hashing 125 => 51
Hashing 126 => 202
Hashing 127 => 2
Hashing 128 => 51
Hashing 129 => 53
Hashing 130 => 44
Hashing 131 => 255
Hashing 132 => 198
Hashing 133 => 43
Hashing 134 => 51
Hashing 135 => 202
Hashing 136 => 2
Hashing 137 => 51
Hashing 138 => 53
Hashing 139 => 55
Hashing 140 => 255
Hashing 141 => 198
Hashing 142 => 43
Hashing 143 => 51
Hashing 144 => 202
Hashing 145 => 2
Hashing 146 => 51
Hashing 147 => 53
Hashing 148 => 55
Hashing 149 => 58
Hashing 150 => 198
Hashing 151 => 43
Hashing 152 => 51
Hashing 153 => 202
Hashing 154 => 2
Hashing 155 => 51
Hashing 156 => 53
Hashing 157 => 55
Hashing 158 => 58
Hashing 159 => 0
Hashing 160 => 43
Hashing 161 => 51
Hashing 162 => 202
Hashing 163 => 2
Hashing 164 => 51
Hashing 165 => 53
Hashing 166 => 55
Hashing 167 => 58
Hashing 168 => 0
Hashing 169 => 209
Hashing 170 => 51
Hashing 171 => 202
Hashing 172 => 2
Hashing 173 => 51
Hashing 174 => 53
Hashing 175 => 55
Hashing 176 => 58
Hashing 177 => 0
Hashing 178 => 209
Hashing 179 => 216
Hashing 180 => 202
Hashing 181 => 2
Hashing 182 => 51
Hashing 183 => 53
Hashing 184 => 55
Hashing 185 => 58
Hashing 186 => 0
Hashing 187 => 209
Hashing 188 => 216
Hashing 189 => 219
Hashing 190 => 2
Hashing 191 => 51
Hashing 192 => 53
Hashing 193 => 55
Hashing 194 => 58
Hashing 195 => 0
Hashing 196 => 209
Hashing 197 => 216
Hashing 198 => 219
Hashing 199 => 220
Hashing 200 => 248
Hashing 201 => 49
Hashing 202 => 44
Hashing 203 => 255
Hashing 204 => 198
Hashing 205 => 43
Hashing 206 => 51
Hashing 207 => 202
Hashing 208 => 2
Hashing 209 => 51
Hashing 210 => 49
Hashing 211 => 44
Hashing 212 => 255
Hashing 213 => 198
Hashing 214 => 43
Hashing 215 => 51
Hashing 216 => 202
Hashing 217 => 2
Hashing 218 => 51
Hashing 219 => 53
Hashing 220 => 44
Hashing 221 => 255
Hashing 222 => 198
Hashing 223 => 43
Hashing 224 => 51
Hashing 225 => 202
Hashing 226 => 2
Hashing 227 => 51
Hashing 228 => 53
Hashing 229 => 55
Hashing 230 => 255
Hashing 231 => 198
Hashing 232 => 43
Hashing 233 => 51
Hashing 234 => 202
Hashing 235 => 2
Hashing 236 => 51
Hashing 237 => 53
Hashing 238 => 55
Hashing 239 => 58
Hashing 240 => 198
Hashing 241 => 43
Hashing 242 => 51
Hashing 243 => 202
Hashing 244 => 2
Hashing 245 => 51
Hashing 246 => 53
Hashing 247 => 55
Hashing 248 => 58
Hashing 249 => 0
Hashing 250 => 43
Hashing 251 => 51
Hashing 252 => 202
Hashing 253 => 2
Hashing 254 => 51
Hashing 255 => 53
那里仍然有一个粗略的模式,但请注意,它只不过是我们的底层函数(已经很弱)的模式。
但是请注意0
,3
即使它们不在单次运行中,也会发生碰撞。这是我之前所说的应用(碰撞阻力对于所有输入的集合保持相同,但由于基础算法中的缺陷可能会打开特定的碰撞路线)。
TL/DR 部分
通过将输入反馈到每次迭代中,我们有效地打破了之前迭代中可能发生的任何冲突。
因此,md5($input . md5($input));
应该(至少在理论上md5($input)
)与.
这重要吗?
是的。这是 PBKDF2 在RFC 2898中替换 PBKDF1 的原因之一。考虑两者的内部循环::
PBKDF1:
T_1 = Hash (P || S) ,
T_2 = Hash (T_1) ,
...
T_c = Hash (T_{c-1})
c
迭代计数在哪里,P
密码在哪里,S
盐在哪里
PBKDF2:
U_1 = PRF (P, S || INT (i)) ,
U_2 = PRF (P, U_1) ,
...
U_c = PRF (P, U_{c-1})
PRF 实际上只是一个 HMAC。但是为了我们的目的,我们只是说PRF(P, S) = Hash(P || S)
(也就是说,2 个输入的 PRF 大致相同,就像两个连接在一起的哈希一样)。它不是,但就我们的目的而言,它是。
所以 PBKDF2 保持了底层Hash
函数的抗碰撞性,而 PBKDF1 没有。
将所有这些捆绑在一起:
我们知道迭代哈希的安全方法。实际上:
$hash = $input;
$i = 10000;
do {
$hash = hash($input . $hash);
} while ($i-- > 0);
通常是安全的。
现在,要了解我们为什么要散列它,让我们分析熵运动。
哈希接受无限集合:S(∞)
并产生一个更小、大小一致的集合S(n)
。下一次迭代(假设输入被传回)再次映射S(∞)
到S(n)
:
S(∞) -> S(n)
S(∞) -> S(n)
S(∞) -> S(n)
S(∞) -> S(n)
S(∞) -> S(n)
S(∞) -> S(n)
请注意,最终输出的熵与第一个输出完全相同。迭代不会“使它更加模糊”。熵是相同的。没有不可预测性的神奇来源(它是伪随机函数,而不是随机函数)。
然而,迭代是有好处的。它人为地使散列过程变慢。这就是为什么迭代可能是一个好主意。事实上,这是大多数现代密码散列算法的基本原理(反复做某事会使其变慢的事实)。
慢是好的,因为它正在对抗主要的安全威胁:暴力破解。我们的哈希算法越慢,攻击者就越难攻击从我们那里窃取的密码哈希。这是一件好事!