9

为了构建 NaiveBayes 多类分类器,我使用 CrossValidator 来选择管道中的最佳参数:

val cv = new CrossValidator()
        .setEstimator(pipeline)
        .setEstimatorParamMaps(paramGrid)
        .setEvaluator(new MulticlassClassificationEvaluator)
        .setNumFolds(10)

val cvModel = cv.fit(trainingSet)

该管道包含以下顺序的常用转换器和估计器:Tokenizer、StopWordsRemover、HashingTF、IDF,最后是 NaiveBayes。

是否可以访问为最佳模型计算的指标?

理想情况下,我想访问所有模型的指标,看看改变参数是如何改变分类质量的。但就目前而言,最好的模型已经足够好了。

仅供参考,我使用的是 Spark 1.6.0

4

2 回答 2

10

这是我的做法:

val pipeline = new Pipeline()
  .setStages(Array(tokenizer, stopWordsFilter, tf, idf, word2Vec, featureVectorAssembler, categoryIndexerModel, classifier, categoryReverseIndexer))

...

val paramGrid = new ParamGridBuilder()
  .addGrid(tf.numFeatures, Array(10, 100))
  .addGrid(idf.minDocFreq, Array(1, 10))
  .addGrid(word2Vec.vectorSize, Array(200, 300))
  .addGrid(classifier.maxDepth, Array(3, 5))
  .build()

paramGrid.size // 16 entries

...

// Print the average metrics per ParamGrid entry
val avgMetricsParamGrid = crossValidatorModel.avgMetrics

// Combine with paramGrid to see how they affect the overall metrics
val combined = paramGrid.zip(avgMetricsParamGrid)

...

val bestModel = crossValidatorModel.bestModel.asInstanceOf[PipelineModel]

// Explain params for each stage
val bestHashingTFNumFeatures = bestModel.stages(2).asInstanceOf[HashingTF].explainParams
val bestIDFMinDocFrequency = bestModel.stages(3).asInstanceOf[IDFModel].explainParams
val bestWord2VecVectorSize = bestModel.stages(4).asInstanceOf[Word2VecModel].explainParams
val bestDecisionTreeDepth = bestModel.stages(7).asInstanceOf[DecisionTreeClassificationModel].explainParams
于 2016-01-08T21:48:07.997 回答
1
 cvModel.avgMetrics

适用于 pyspark 2.2.0

于 2017-11-09T21:24:14.513 回答