这是 SO 问题的后续问题:手动编写线性编程练习。我对出于教学目的实施单纯形算法(线性规划)也有类似的兴趣。我知道单纯形算法的简单实现可能有许多改进。但我有兴趣开发一个最小的完整单工代码。
到目前为止,我发现的最接近的实现是在这个答案中,由于@Pii 对上述 matlab 中的问题,为了完整起见,在下面复制。从相对较短的代码中,我可以看到涉及旋转的单纯形的基本逻辑是如何实现的(正如@RamNarasimhan 的回答中所指出的那样)。但我不知道如何处理线性规划问题的特殊情况,包括:
不可行问题,其中可行域是空的。
无界问题,其中目标函数值不受上述约束(对于标准 LP 格式:即最大化问题)
我想通过处理这两种情况,一个单纯形实现将是完整的,因为它可以处理任何 LP 问题。
我的问题是如何修改代码来处理这两种特殊情况。
注意:我不是在寻找完整的代码,只是描述处理上述两种极端情况的具体逻辑。我还查看了寻找“简单”整数线性编程源代码/伪代码,但没有找到答案。
-- @Pii 提供的代码 --
function [x, fval] = mySimplex(fun, A, B, lb, up)
%Examples paramters to show that the function actually works
% sample set 1 (works for this data set)
% fun = [8 10 7];
% A = [1 3 2; 1 5 1];
% B = [10; 8];
% lb = [0; 0; 0];
% ub = [inf; inf; inf];
% sample set 2 (works for this data set)
fun = [7 8 10];
A = [2 3 2; 1 1 2];
B = [1000; 800];
lb = [0; 0; 0];
ub = [inf; inf; inf];
% generate a new slack variable for every row of A
numSlackVars = size(A,1); % need a new slack variables for every row of A
% Set up tableau to store algorithm data
tableau = [A; -fun];
tableau = [tableau, eye(numSlackVars + 1)];
lastCol = [B;0];
tableau = [tableau, lastCol];
% for convienience sake, assign the following:
numRows = size(tableau,1);
numCols = size(tableau,2);
% do simplex algorithm
% step 0: find num of negative entries in bottom row of tableau
numNeg = 0; % the number of negative entries in bottom row
for i=1:numCols
if(tableau(numRows,i) < 0)
numNeg = numNeg + 1;
end
end
% Remark: the number of negatives is exactly the number of iterations
% needed in the simplex algorithm
for iterations = 1:numNeg
% step 1: find minimum value in last row
minVal = 10000; % some big number
minCol = 1; % start by assuming min value is the first element
for i=1:numCols
if(tableau(numRows, i) < minVal)
minVal = tableau(size(tableau,1), i);
minCol = i; % update the index corresponding to the min element
end
end
% step 2: Find corresponding ratio vector in pivot column
vectorRatio = zeros(numRows -1, 1);
for i=1:(numRows-1) % the size of ratio vector is numCols - 1
vectorRatio(i, 1) = tableau(i, numCols) ./ tableau(i, minCol);
end
% step 3: Determine pivot element by finding minimum element in vector
% ratio
minVal = 10000; % some big number
minRatio = 1; % holds the element with the minimum ratio
for i=1:numRows-1
if(vectorRatio(i,1) < minVal)
minVal = vectorRatio(i,1);
minRatio = i;
end
end
% step 4: assign pivot element
pivotElement = tableau(minRatio, minCol);
% step 5: perform pivot operation on tableau around the pivot element
tableau(minRatio, :) = tableau(minRatio, :) * (1/pivotElement);
% step 6: perform pivot operation on rows (not including last row)
for i=1:size(vectorRatio,1)+1 % do last row last
if(i ~= minRatio) % skip over the minRatio'th element of the tableau
tableau(i, :) = -tableau(i, minCol) * tableau(minRatio, :)
+ tableau(i,:);
end
end
end
% Now we can interpret the algo tableau
numVars = size(A,2); % the number of cols of A is the number of variables
x = zeros(size(size(tableau,1), 1)); % for efficiency
% Check for basicity
for col=1:numVars
count_zero = 0;
count_one = 0;
for row = 1:size(tableau,1)
if(tableau(row,col) < 1e-2)
count_zero = count_zero + 1;
elseif(tableau(row,col) - 1 < 1e-2)
count_one = count_one + 1;
stored_row = row; % store this column for later use
end
end
if(count_zero == (size(tableau,1) -1) && count_one == 1) % basic case
x(col,1) = tableau(stored_row, numCols);
else
x(col,1) = 0; % not basic case
end
end
% find function optimal value at optimal solution
fval = x(1,1) * fun(1,1); % just needed for logic to work here
for i=2:numVars
fval = fval + x(i,1) * fun(1,i);
end
end