5

我试图证明当有很多读者而只有一些作者时,同步会更慢。不知何故,我证明了相反的情况。

RW 示例,执行时间为 313 毫秒:

package zad3readWriteLockPerformance;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Main {
    public static long start, end;

    public static void main(String[] args) {
        Runtime.getRuntime().addShutdownHook(new Thread(() -> {
            end = System.currentTimeMillis();
            System.out.println("Time of execution " + (end - start) + " ms");
        }));
        start = System.currentTimeMillis();
        final int NUMBER_OF_THREADS = 1000;
        ThreadSafeArrayList<Integer> threadSafeArrayList = new ThreadSafeArrayList<>();
        ArrayList<Thread> consumerThreadList = new ArrayList<Thread>();
        for (int i = 0; i < NUMBER_OF_THREADS; i++) {
            Thread t = new Thread(new Consumer(threadSafeArrayList));
            consumerThreadList.add(t);
            t.start();
        }

        ArrayList<Thread> producerThreadList = new ArrayList<Thread>();
        for (int i = 0; i < NUMBER_OF_THREADS/10; i++) {
            Thread t = new Thread(new Producer(threadSafeArrayList));
            producerThreadList.add(t);
            t.start();

        }



        //  System.out.println("Printing the First Element : " + threadSafeArrayList.get(1));

    }

}
class Consumer implements Runnable {
    public final static int NUMBER_OF_OPERATIONS = 100;
    ThreadSafeArrayList<Integer> threadSafeArrayList;

    public Consumer(ThreadSafeArrayList<Integer> threadSafeArrayList) {
        this.threadSafeArrayList = threadSafeArrayList;
    }

    @Override
    public void run() {
        for (int j = 0; j < NUMBER_OF_OPERATIONS; j++) {
            Integer obtainedElement = threadSafeArrayList.getRandomElement();
        }
    }

}
class Producer implements Runnable {
    public final static int NUMBER_OF_OPERATIONS = 100;
    ThreadSafeArrayList<Integer> threadSafeArrayList;

    public Producer(ThreadSafeArrayList<Integer> threadSafeArrayList) {
        this.threadSafeArrayList = threadSafeArrayList;
    }

    @Override
    public void run() {
        for (int j = 0; j < NUMBER_OF_OPERATIONS; j++) {
            threadSafeArrayList.add((int) (Math.random() * 1000));
        }
    }

}

class ThreadSafeArrayList<E> {
    private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

    private final Lock readLock = readWriteLock.readLock();

    private final Lock writeLock = readWriteLock.writeLock();

    private final List<E> list = new ArrayList<>();

    public void add(E o) {
        writeLock.lock();
        try {
            list.add(o);
            //System.out.println("Adding element by thread" + Thread.currentThread().getName());
        } finally {
            writeLock.unlock();
        }
    }

    public E getRandomElement() {
        readLock.lock();
        try {
            //System.out.println("Printing elements by thread" + Thread.currentThread().getName());
            if (size() == 0) {
                return null;
            }
            return list.get((int) (Math.random() * size()));
        } finally {
            readLock.unlock();
        }
    }

    public int size() {
        return list.size();
    }

}

同步示例,执行时间仅为 241ms:

package zad3readWriteLockPerformanceZMIENONENENASYNCHRO;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Main {
    public static long start, end;

    public static void main(String[] args) {
        Runtime.getRuntime().addShutdownHook(new Thread(() -> {
            end = System.currentTimeMillis();
            System.out.println("Time of execution " + (end - start) + " ms");
        }));
        start = System.currentTimeMillis();
        final int NUMBER_OF_THREADS = 1000;
        List<Integer> list = Collections.synchronizedList(new ArrayList<Integer>());
        ArrayList<Thread> consumerThreadList = new ArrayList<Thread>();
        for (int i = 0; i < NUMBER_OF_THREADS; i++) {
            Thread t = new Thread(new Consumer(list));
            consumerThreadList.add(t);
            t.start();
        }

        ArrayList<Thread> producerThreadList = new ArrayList<Thread>();
        for (int i = 0; i < NUMBER_OF_THREADS / 10; i++) {
            Thread t = new Thread(new Producer(list));
            producerThreadList.add(t);
            t.start();
        }

        //  System.out.println("Printing the First Element : " + threadSafeArrayList.get(1));

    }

}

class Consumer implements Runnable {
    public final static int NUMBER_OF_OPERATIONS = 100;
    List<Integer> list;

    public Consumer(List<Integer> list) {
        this.list = list;
    }

    @Override
    public void run() {
        for (int j = 0; j < NUMBER_OF_OPERATIONS; j++) {
            if (list.size() > 0)
                list.get((int) (Math.random() * list.size()));
        }
    }

}

class Producer implements Runnable {
    public final static int NUMBER_OF_OPERATIONS = 100;
    List<Integer> threadSafeArrayList;

    public Producer(List<Integer> threadSafeArrayList) {
        this.threadSafeArrayList = threadSafeArrayList;
    }

    @Override
    public void run() {
        for (int j = 0; j < NUMBER_OF_OPERATIONS; j++) {
            threadSafeArrayList.add((int) (Math.random() * 1000));
        }
    }

}

当我的读者比作者多十倍时,为什么同步收集更快。如何显示我在许多文章中读到的 RW 锁的提前?

4

1 回答 1

14

获取 ReadWriteLock 的实际成本通常比获取简单互斥锁的成本要慢得多。ReadWriteLock的javadoc是这样写的:

读写锁是否会比使用互斥锁提高性能取决于数据被读取与修改相比的频率、读写操作的持续时间以及数据的争用——即即,将尝试同时读取或写入数据的线程数。例如,最初填充了数据并随后不经常修改但经常被搜索(例如某种目录)的集合是使用读写锁的理想候选者。但是,如果更新变得频繁,则数据大部分时间都被排他锁定,并且并发性几乎没有增加。更远,如果读取操作太短,则读写锁实现的开销(本质上比互斥锁更复杂)会主导执行成本,特别是因为许多读写锁实现仍然通过一小部分序列化所有线程的代码。最终,只有分析和测量才能确定读写锁的使用是否适合您的应用程序。

因此,您的线程正在执行非常简单的操作这一事实可能意味着性能取决于实际获取锁所花费的时间。

您的基准测试也存在问题,即Math.random同步。从它的javadoc

此方法已正确同步,以允许多个线程正确使用。但是,如果许多线程需要以很高的速率生成伪随机数,则可能会减少每个线程对拥有自己的伪随机数生成器的争用。

因此,即使您的并发读者在获得 ReadWriteLock 后并没有相互阻塞,他们可能仍然在争夺在 中获得的锁Math.random,从而抵消了使用 ReadWriteLock 的一些好处。您可以改用ThreadLocalRandom来改进这一点。

此外,正如 assylias 所指出的,不考虑 JIT 编译和其他运行时怪癖的幼稚 Java 基准测试是不可靠的。您应该使用Java Microbenchmarking Harness (JMH)进行此类基准测试。

于 2016-01-05T14:40:43.577 回答