我需要 Flink Streaming 方面的帮助。我在下面生成了一个简单的 Hello-world 类型的代码。这会从 RabbitMQ 流式传输 Avro 消息并将其持久化到 HDFS。我希望有人可以查看代码,也许它可以帮助其他人。
我为 Flink 流式传输找到的大多数示例都将结果发送到标准输出。我实际上想将数据保存到 Hadoop。我读到,理论上,你可以使用 Flink 流式传输到任何你喜欢的地方。实际上,我还没有找到任何将数据保存到 HDFS 的示例。但是,根据我找到的示例以及试验和错误,我提供了以下代码。
这里的数据源是 RabbitMQ。我使用客户端应用程序将“MyAvroObjects”发送到 RabbitMQ。MyAvroObject.java - 不包括 - 从 avro IDL 生成...可以是任何 avro 消息。
下面的代码使用 RabbitMQ 消息,并将其保存到 HDFS,作为 avro 文件......嗯,这就是我希望的。
package com.johanw.flink.stackoverflow;
import java.io.IOException;
import org.apache.avro.io.Decoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroOutputFormat;
import org.apache.avro.mapred.AvroWrapper;
import org.apache.avro.mapreduce.AvroJob;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.hadoop.mapred.HadoopOutputFormat;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.FileSinkFunctionByMillis;
import org.apache.flink.streaming.connectors.rabbitmq.RMQSource;
import org.apache.flink.streaming.util.serialization.DeserializationSchema;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class RMQToHadoop {
public class MyDeserializationSchema implements DeserializationSchema<MyAvroObject> {
private static final long serialVersionUID = 1L;
@Override
public TypeInformation<MyAvroObject> getProducedType() {
return TypeExtractor.getForClass(MyAvroObject.class);
}
@Override
public MyAvroObject deserialize(byte[] array) throws IOException {
SpecificDatumReader<MyAvroObject> reader = new SpecificDatumReader<MyAvroObject>(MyAvroObject.getClassSchema());
Decoder decoder = DecoderFactory.get().binaryDecoder(array, null);
MyAvroObject MyAvroObject = reader.read(null, decoder);
return MyAvroObject;
}
@Override
public boolean isEndOfStream(MyAvroObject arg0) {
return false;
}
}
private String hostName;
private String queueName;
public final static String path = "/hdfsroot";
private static Logger logger = LoggerFactory.getLogger(RMQToHadoop.class);
public RMQToHadoop(String hostName, String queueName) {
super();
this.hostName = hostName;
this.queueName = queueName;
}
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
public void run() {
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
logger.info("Running " + RMQToHadoop.class.getName());
DataStream<MyAvroObject> socketStockStream = env.addSource(new RMQSource<>(hostName, queueName, new MyDeserializationSchema()));
Job job;
try {
job = Job.getInstance();
AvroJob.setInputKeySchema(job, MyAvroObject.getClassSchema());
} catch (IOException e1) {
e1.printStackTrace();
}
try {
JobConf jobConf = new JobConf(Job.getInstance().getConfiguration());
jobConf.set("avro.output.schema", MyAvroObject.getClassSchema().toString());
org.apache.avro.mapred.AvroOutputFormat<MyAvroObject> akof = new AvroOutputFormat<MyAvroObject>();
HadoopOutputFormat<AvroWrapper<MyAvroObject>, NullWritable> hof = new HadoopOutputFormat<AvroWrapper<MyAvroObject>, NullWritable>(akof, jobConf);
FileSinkFunctionByMillis<Tuple2<AvroWrapper<MyAvroObject>, NullWritable>> fileSinkFunctionByMillis = new FileSinkFunctionByMillis<Tuple2<AvroWrapper<MyAvroObject>, NullWritable>>(hof, 10000l);
org.apache.hadoop.mapred.FileOutputFormat.setOutputPath(jobConf, new Path(path));
socketStockStream.map(new MapFunction<MyAvroObject, Tuple2<AvroWrapper<MyAvroObject>, NullWritable>>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<AvroWrapper<MyAvroObject>, NullWritable> map(MyAvroObject envelope) throws Exception {
logger.info("map");
AvroKey<MyAvroObject> key = new AvroKey<MyAvroObject>(envelope);
Tuple2<AvroWrapper<MyAvroObject>, NullWritable> tupple = new Tuple2<AvroWrapper<MyAvroObject>, NullWritable>(key, NullWritable.get());
return tupple;
}
}).addSink(fileSinkFunctionByMillis);
try {
env.execute();
} catch (Exception e) {
logger.error("Error while running " + RMQToHadoop.class + ".", e);
}
} catch (IOException e) {
logger.error("Error while running " + RMQToHadoop.class + ".", e);
}
}
public static void main(String[] args) throws IOException {
RMQToHadoop toHadoop = new RMQToHadoop("localhost", "rabbitTestQueue");
toHadoop.run();
}
}
如果您更喜欢 RabbitMQ 以外的其他来源,那么使用其他来源也可以正常工作。例如使用 Kafka 消费者:
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer082;
...
DataStreamSource<MyAvroObject> socketStockStream = env.addSource(new FlinkKafkaConsumer082<MyAvroObject>(topic, new MyDeserializationSchema(), sourceProperties));
问题:
请查阅。这是将数据保存到 HDFS 的好习惯吗?
如果流式传输过程引起问题怎么办,比如在序列化期间。它生成和异常,代码就退出了。Spark 流式传输依赖于 Yarn 自动重启应用。这也是使用 Flink 时的好习惯吗?
我正在使用 FileSinkFunctionByMillis。我实际上希望使用 HdfsSinkFunction 之类的东西,但这并不存在。所以 FileSinkFunctionByMillis 是最接近这个的,这对我来说很有意义。同样,我发现的文档没有任何解释该怎么做,所以我只是猜测。
当我在本地运行它时,我找到了一个类似“C:\hdfsroot_temporary\0_temporary\attempt__0000_r_000001_0”的目录结构,它是...... basare。这里有什么想法吗?
顺便说一句,当您想将数据保存到 Kafka 时,我可以使用...
Properties destProperties = new Properties();
destProperties.setProperty("bootstrap.servers", bootstrapServers);
FlinkKafkaProducer<MyAvroObject> kafkaProducer = new FlinkKafkaProducer<L3Result>("MyKafkaTopic", new MySerializationSchema(), destProperties);
提前谢谢了!!!!