8

通过spark-csv README运行示例 Java 代码,例如 import org.apache.spark.sql.SQLContext; 导入 org.apache.spark.sql.types.*;

SQLContext sqlContext = new SQLContext(sc);
StructType customSchema = new StructType(
    new StructField("year", IntegerType, true), 
    new StructField("make", StringType, true),
    new StructField("model", StringType, true),
    new StructField("comment", StringType, true),
    new StructField("blank", StringType, true));

DataFrame df = sqlContext.read()
    .format("com.databricks.spark.csv")
    .option("inferSchema", "true")
    .option("header", "true")
    .load("cars.csv");

df.select("year", "model").write()
    .format("com.databricks.spark.csv")
    .option("header", "true")
    .save("newcars.csv");

它没有开箱即用地编译,因此经过一番争论,我通过将不正确的FooType语法更改为DataTypes.FooType并将 StructFields 作为new StructField[];传递来编译它。metadata编译器在构造函数中请求了第四个参数,StructField但我很难找到关于它的含义的文档(javadocs 描述了它的用例,但并没有真正决定在 StructField 构造期间传递什么)。使用以下代码,它现在会一直运行,直到出现任何副作用方法,例如collect()

JavaSparkContext sc = new JavaSparkContext(conf);

SQLContext sqlContext = new SQLContext(sc);

// Read features.
System.out.println("Reading features from " + args[0]);
StructType featuresSchema = new StructType(new StructField[] {
    new StructField("case_id", DataTypes.StringType, false, null), 
    new StructField("foo", DataTypes.DoubleType, false, null)
});
DataFrame features = sqlContext.read()
    .format("com.databricks.spark.csv")
    .schema(featuresSchema)
    .load(args[0]);
for (Row r : features.collect()) {
  System.out.println("Row: " + r);
}

我得到以下异常:

Exception in thread "main" java.lang.NullPointerException
  at org.apache.spark.sql.catalyst.expressions.AttributeReference.hashCode(namedExpressions.scala:202)
  at scala.runtime.ScalaRunTime$.hash(ScalaRunTime.scala:210)
  at scala.collection.immutable.HashSet.elemHashCode(HashSet.scala:65)
  at scala.collection.immutable.HashSet.computeHash(HashSet.scala:74)
  at scala.collection.immutable.HashSet.$plus(HashSet.scala:56)
  at scala.collection.immutable.HashSet.$plus(HashSet.scala:59)
  at scala.collection.immutable.Set$Set4.$plus(Set.scala:127)
  at scala.collection.immutable.Set$Set4.$plus(Set.scala:121)
  at scala.collection.mutable.SetBuilder.$plus$eq(SetBuilder.scala:24)
  at scala.collection.mutable.SetBuilder.$plus$eq(SetBuilder.scala:22)
  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
  at scala.collection.immutable.HashSet$HashSet1.foreach(HashSet.scala:153)
  at scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:306)
  at scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:306)
  at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
  at scala.collection.AbstractSet.scala$collection$SetLike$$super$map(Set.scala:47)
  at scala.collection.SetLike$class.map(SetLike.scala:93)
  at scala.collection.AbstractSet.map(Set.scala:47)
  at org.apache.spark.sql.catalyst.expressions.AttributeSet.foreach(AttributeSet.scala:114)
  at scala.collection.TraversableOnce$class.size(TraversableOnce.scala:105)
  at org.apache.spark.sql.catalyst.expressions.AttributeSet.size(AttributeSet.scala:56)
  at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.pruneFilterProjectRaw(DataSourceStrategy.scala:307)
  at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.pruneFilterProject(DataSourceStrategy.scala:282)
  at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.apply(DataSourceStrategy.scala:56)
  at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
  at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
  at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
  at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59)
  at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:926)
  at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:924)
  at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:930)
  at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:930)
  at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:53)
  at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1903)
  at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1384)
...

知道有什么问题吗?

4

2 回答 2

10

似乎 README 非常过时,需要对 Java 示例进行一些重要的编辑。我追踪了添加元数据字段的实际 JIRA,它指出了Map.emptyScala 案例的默认值的使用,尽管输入缺少相同的默认值,但编写文档的人一定只是将 Scala 直接翻译成 Java范围。

SparkSQL 代码的 1.5 分支中,我们可以看到它在metadata.hashCode()没有检查的情况下引用,这就是导致NullPointerException. Metadata.empty()方法的存在以及关于在 Scala 中默认使用空映射的讨论似乎意味着正确的实现是继续前进,Metadata.empty()如果您不关心它,则通过。修改后的例子应该是:

SQLContext sqlContext = new SQLContext(sc);
StructType customSchema = new StructType(new StructField[] {
    new StructField("year", DataTypes.IntegerType, true, Metadata.empty()), 
    new StructField("make", DataTypes.StringType, true, Metadata.empty()),
    new StructField("model", DataTypes.StringType, true, Metadata.empty()),
    new StructField("comment", DataTypes.StringType, true, Metadata.empty()),
    new StructField("blank", DataTypes.StringType, true, Metadata.empty())
});

DataFrame df = sqlContext.read()
    .format("com.databricks.spark.csv")
    .schema(customSchema)
    .option("header", "true")
    .load("cars.csv");

df.select("year", "model").write()
    .format("com.databricks.spark.csv")
    .option("header", "true")
    .save("newcars.csv");
于 2015-12-21T03:56:32.167 回答
3

即使我得到同样的例外。我通过提供元数据来修复它。

所以改变代码

StructType customSchema = new StructType(
new StructField("year", IntegerType, true,Metadata.empty()), 
new StructField("make", StringType, true,Metadata.empty()),
new StructField("model", StringType, true,Metadata.empty()),
new StructField("comment", StringType, true,Metadata.empty()),
new StructField("blank", StringType, true,Metadata.empty()));

这将解决问题

于 2017-09-24T16:04:04.400 回答