0

由于我是 Spark 的 Scala API 的新手,我遇到了以下问题:

在我的 java 代码中,我做了一个 reduceByKeyAndWindow 转换,但现在我看到,只有一个 reduceByWindow(因为 Scala 中也没有 PairDStream)。但是,我现在开始使用 Scala 的第一步:

import org.apache.hadoop.conf.Configuration;
import [...]

val serverIp = "xxx.xxx.xxx.xxx"
val receiverInstances = 2
val batchIntervalSec = 2
val windowSize1hSek = 60 * 60
val slideDurationSek = batchIntervalSec

val streamingCtx = new StreamingContext(sc, Seconds(batchIntervalSec))

val hadoopConf = sc.hadoopConfiguration
hadoopConf.set("fs.s3n.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
hadoopConf.set("fs.s3n.awsAccessKeyId", "xxx")
hadoopConf.set("fs.s3n.awsSecretAccessKey", "xxx")

// ReceiverInputDStream
val receiver1 = streamingCtx.socketTextStream(serverIp, 7777)
val receiver2 = streamingCtx.socketTextStream(serverIp, 7778)

// DStream
val inputDStream = receiver1.union(receiver2)

// h.hh.plug.ts.val
case class DebsEntry(house: Integer, household: Integer, plug: Integer, ts: Long, value: Float)

// h.hh.plug.val
case class DebsEntryWithoutTs(house: Integer, household: Integer, plug: Integer, value: Float)

// h.hh.plug.1
case class DebsEntryWithoutTsCount(house: Integer, household: Integer, plug: Integer, count: Long)

val debsPairDStream = inputDStream.map(s => s.split(",")).map(s => DebsEntry(s(6).toInt, s(5).toInt, s(4).toInt, s(1).toLong, s(2).toFloat)) //.foreachRDD(rdd => rdd.toDF().registerTempTable("test"))

val debsPairDStreamWithoutDuplicates = debsPairDStream.transform(s => s.distinct())

val debsPairDStreamConsumptionGreater0 = debsPairDStreamWithoutDuplicates.filter(s => s.value > 100.0)

debsPairDStreamConsumptionGreater0.foreachRDD(rdd => rdd.toDF().registerTempTable("test3"))

val debsPairDStreamConsumptionGreater0withoutTs = debsPairDStreamConsumptionGreater0.map(s => DebsEntryWithoutTs(s.house, s.household, s.plug, s.value))

// 5.) Average per Plug
// 5.1) Create a count-prepared PairDStream (house, household, plug, 1)
val countPreparedPerPlug1h = debsPairDStreamConsumptionGreater0withoutTs.map(s => DebsEntryWithoutTsCount(s.house, s.household, s.plug, 1))

// 5.2) ReduceByKeyAndWindow
val countPerPlug1h = countPreparedPerPlug1h.reduceByWindow(...???...)

直到步骤 5.1 一切正常。在 5.2 中,我现在想总结countPreparedPerPlug1h的 1,但前提是其他属性(房屋、家庭、插头)相等。- 目标是获得每个(房屋、家庭、插头)组合的条目计数。有人可以帮忙吗?谢谢!

编辑 - 第一次尝试

我在步骤 5.2 中尝试了以下操作:

// 5.2)
val countPerPlug1h = countPreparedPerPlug1h.reduceByKeyAndWindow((a,b) => a+b, Seconds(windowSize1hSek), Seconds(slideDurationSek))

但在这里我得到以下错误:

<console>:69: error: missing parameter type
   val countPerPlug1h = countPreparedPerPlug1h.reduceByKeyAndWindow((a,b) => a+b, Seconds(windowSize1hSek), Seconds(slideDurationSek))
                                                                     ^

似乎我使用reduceByKeyAndWindow 转换错误,但错误在哪里?要汇总的值的类型是 Int,请参见上面步骤 5.1 中的 countPreparedPerPlug1h。

4

2 回答 2

2

您可以reduceByKeyAndWindow在 Scala 中使用比在 Java 版本中更简单的方法。您没有 PairDStream,因为对是隐式确定的,您可以直接调用对方法。隐含的决议去PairDStreamFunctions

例如:

val myPairDStream: DStream[KeyType, ValueType] = ...
myPairDStream.reduceByKeyAndWindow(...)

这实际上是幕后的以下内容:

new PairDStreamFunctions(myPairDStream).reduceByKeyAndWindow(...)

这个包装器PairDStreamFunctions被添加到任何由Tuple2

于 2015-12-17T19:26:37.433 回答
1

我明白了,现在似乎可以使用以下代码:

val countPerPlug1h = countPreparedPerPlug1h.reduceByKeyAndWindow({(x, y) => x + y}, {(x, y) => x - y}, Seconds(windowSize1hSek), Seconds(slideDurationSek))

谢谢你的线索,@Justin Pihony

于 2015-12-18T13:51:55.920 回答