2

考虑到投资组合过去表现的侧面约束(就风险价值而言),我需要优化投资组合。我的问题的简化版本是

min t
s.t. t >= (w'H1w)^0.5 + (w'H2w)^0.5 = ||G1w||_2 + ||G2w||_2           (1)
          ...

其中 H1 和 H2 是协方差矩阵,w 是投资组合权重的向量。G1 和 G2 使得 H = G'G。圆点表示我为简洁起见省略的其他约束。

根据论文,这是一个二阶锥问题。我试图在 Mosek 中这样做,但我不知道如何将 (1) 写成圆锥体。如果我必须最小化方差之和,任务会很容易,但不幸的是,我必须最小化标准偏差之和。

我如何用(旋转的)二次圆锥写(1)?

4

1 回答 1

2

诀窍是将总和分成两项。你可以写例如

min t1+t2 s.t. t1 >= (w'H1w)^0.5 and t2 >= (w'H2w)^0.5 

并且每个约束都可以使用二次圆锥来表示。

于 2015-12-09T10:40:55.410 回答