首先,让我们看一下 NLTK 给出的 POS 标签:
>>> from nltk import pos_tag
>>> sent = 'The pizza was awesome and brilliant'.split()
>>> pos_tag(sent)
[('The', 'DT'), ('pizza', 'NN'), ('was', 'VBD'), ('awesome', 'JJ'), ('and', 'CC'), ('brilliant', 'JJ')]
>>> sent = 'The pizza was good but pasta was bad'.split()
>>> pos_tag(sent)
[('The', 'DT'), ('pizza', 'NN'), ('was', 'VBD'), ('good', 'JJ'), ('but', 'CC'), ('pasta', 'NN'), ('was', 'VBD'), ('bad', 'JJ')]
(注意:以上是 NLTK v3.1 的输出pos_tag
,旧版本可能会有所不同)
你想要捕捉的本质上是:
- NN VBD JJ CC JJ
- NN VBD JJ
所以让我们用这些模式来捕捉它们:
>>> from nltk import RegexpParser
>>> sent1 = ['The', 'pizza', 'was', 'awesome', 'and', 'brilliant']
>>> sent2 = ['The', 'pizza', 'was', 'good', 'but', 'pasta', 'was', 'bad']
>>> patterns = """
... P: {<NN><VBD><JJ><CC><JJ>}
... {<NN><VBD><JJ>}
... """
>>> PChunker = RegexpParser(patterns)
>>> PChunker.parse(pos_tag(sent1))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('awesome', 'JJ'), ('and', 'CC'), ('brilliant', 'JJ')])])
>>> PChunker.parse(pos_tag(sent2))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('good', 'JJ')]), ('but', 'CC'), Tree('P', [('pasta', 'NN'), ('was', 'VBD'), ('bad', 'JJ')])])
这就是硬编码的“作弊”!!!
让我们回到 POS 模式:
- NN VBD JJ CC JJ
- NN VBD JJ
可以简化为:
因此,您可以在正则表达式中使用可选运算符,例如:
>>> patterns = """
... P: {<NN><VBD><JJ>(<CC><JJ>)?}
... """
>>> PChunker = RegexpParser(patterns)
>>> PChunker.parse(pos_tag(sent1))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('awesome', 'JJ'), ('and', 'CC'), ('brilliant', 'JJ')])])
>>> PChunker.parse(pos_tag(sent2))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('good', 'JJ')]), ('but', 'CC'), Tree('P', [('pasta', 'NN'), ('was', 'VBD'), ('bad', 'JJ')])])
很可能您使用的是旧标记器,这就是您的模式不同的原因,但我想您知道如何使用上面的示例捕获所需的短语。
步骤是:
- 首先,使用
pos_tag
- 然后概括模式并简化它们
- 然后将它们放入
RegexpParser