我想为二维矩阵编写一个外推样条函数。我现在拥有的是一维数组的外推样条函数,如下所示。scipy.interpolate.InterpolatedUnivariateSpline()被使用。
import numpy as np
import scipy as sp
def extrapolated_spline_1D(x0,y0):
x0 = np.array(x0)
y0 = np.array(y0)
assert x0.shape == y.shape
spline = sp.interpolate.InterpolatedUnivariateSpline(x0,y0)
def f(x, spline=spline):
return np.select(
[(x<x0[0]), (x>x0[-1]), np.ones_like(x,dtype='bool')],
[np.zeros_like(x)+y0[0], np.zeros_like(x)+y0[-1], spline(x)])
return f
它需要 x0,这是定义函数的位置,以及 y0,这是相应的值。当 x < x0[0] 时,y = y0[0];当 x > x0[-1] 时,y = y0[-1]。这里,假设 x0 是按升序排列的。
我想要一个类似的外插样条函数来使用np.select()处理二维矩阵,就像在extrapolated_spline_1D中一样。我认为scipy.interpolate.RectBivariateSpline()可能会有所帮助,但我不知道该怎么做。
作为参考,我当前版本的extrapolated_spline_2D非常慢。基本思想是:
(1)首先,给定一维数组x0,y0和二维数组z2d0作为输入,生成nx0个extrapolated_spline_1D函数,y0_spls,每一个代表定义在y0上的一层z2d0;
(2) 第二,对于不在网格上的点(x,y),计算nx0个值,每个等于y0_spls[i](y);
(3) 第三步,将 (x0, y0_spls[i](y)) 与extrapolated_spline_1D拟合到 x_spl 并返回 x_spl(x) 作为最终结果。
def extrapolated_spline_2D(x0,y0,z2d0):
'''
x0,y0 : array_like, 1-D arrays of coordinates in strictly monotonic order.
z2d0 : array_like, 2-D array of data with shape (x.size,y.size).
'''
nx0 = x0.shape[0]
ny0 = y0.shape[0]
assert z2d0.shape == (nx0,ny0)
# make nx0 splines, each of which stands for a layer of z2d0 on y0
y0_spls = [extrapolated_spline_1D(y0,z2d0[i,:]) for i in range(nx0)]
def f(x, y):
'''
f takes 2 arguments at the same time --> x, y have the same dimention
Return: a numpy ndarray object with the same shape of x and y
'''
x = np.array(x,dtype='f4')
y = np.array(y,dtype='f4')
assert x.shape == y.shape
ndim = x.ndim
if ndim == 0:
'''
Given a point on the xy-plane.
Make ny = 1 splines, each of which stands for a layer of new_xs on x0
'''
new_xs = np.array([y0_spls[i](y) for i in range(nx0)])
x_spl = extrapolated_spline_1D(x0,new_xs)
result = x_spl(x)
elif ndim == 1:
'''
Given a 1-D array of points on the xy-plane.
'''
ny = len(y)
new_xs = np.array([y0_spls[i](y) for i in range(nx0)]) # new_xs.shape = (nx0,ny)
x_spls = [extrapolated_spline_1D(x0,new_xs[:,i]) for i in range(ny)]
result = np.array([x_spls[i](x[i]) for i in range(ny)])
else:
'''
Given a multiple dimensional array of points on the xy-plane.
'''
x_flatten = x.flatten()
y_flatten = y.flatten()
ny = len(y_flatten)
new_xs = np.array([y0_spls[i](y_flatten) for i in range(nx0)])
x_spls = [extrapolated_spline_1D(x0,new_xs[:,i]) for i in range(ny)]
result = np.array([x_spls[i](x_flatten[i]) for i in range(ny)]).reshape(y.shape)
return result
return f