我在 Amazon RDS db.r3.4xlarge 实例上运行 Postgres 9.4.4 - 16CPU,122GB 内存。我最近遇到了一个查询,它需要在一张大表(约 2.7 亿条记录)上进行相当直接的聚合。该查询需要 5 多个小时才能执行。
大表上的连接列和分组列定义了索引。我已经尝试通过将work_mem和temp_buffers设置为1GB来进行试验,但它帮助很大。
这是查询和执行计划。任何线索将不胜感激。
explain SELECT
largetable.column_group,
MAX(largetable.event_captured_dt) AS last_open_date,
.....
FROM largetable
LEFT JOIN smalltable
ON smalltable.column_b = largetable.column_a
WHERE largetable.column_group IS NOT NULL
GROUP BY largetable.column_group
这是执行计划 -
GroupAggregate (cost=699299968.28..954348399.96 rows=685311 width=38)
Group Key: largetable.column_group
-> Sort (cost=699299968.28..707801354.23 rows=3400554381 width=38)
Sort Key: largetable.column_group
-> Merge Left Join (cost=25512.78..67955201.22 rows=3400554381 width=38)
Merge Cond: (largetable.column_a = smalltable.column_b)
-> Index Scan using xcrmstg_largetable_launch_id on largetable (cost=0.57..16241746.24 rows=271850823 width=34)
Filter: (column_a IS NOT NULL)
-> Sort (cost=25512.21..26127.21 rows=246000 width=4)
Sort Key: smalltable.column_b
-> Seq Scan on smalltable (cost=0.00..3485.00 rows=246000 width=4)