2

几天前,我被我要描述的问题困住了。我正在关注 Daniel Nouri 关于深度学习的教程:http: //danielnouri.org/notes/category/deep-learning/我试图将他的示例调整为分类数据集。我的问题是,如果我将数据集视为回归问题,它可以正常工作,但如果我尝试执行分类,它会失败。我试图写 2 个可重现的例子。

1)回归(效果很好)

import lasagne
from sklearn import datasets
import numpy as np
from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from sklearn.preprocessing import StandardScaler

iris = datasets.load_iris()
X = iris.data[iris.target<2]  # we only take the first two features.
Y = iris.target[iris.target<2]
stdscaler = StandardScaler(copy=True, with_mean=True, with_std=True)
X = stdscaler.fit_transform(X).astype(np.float32)
y = np.asmatrix((Y-0.5)*2).T.astype(np.float32)

print X.shape, type(X)
print y.shape, type(y)

net1 = NeuralNet(
    layers=[  # three layers: one hidden layer
        ('input', layers.InputLayer),
        ('hidden', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ],
    # layer parameters:
    input_shape=(None, 4),  # 96x96 input pixels per batch
    hidden_num_units=10,  # number of units in hidden layer
    output_nonlinearity=None,  # output layer uses identity function
    output_num_units=1,  # 1 target value

    # optimization method:
    update=nesterov_momentum,
    update_learning_rate=0.01,
    update_momentum=0.9,

    regression=True,  # flag to indicate we're dealing with regression problem
    max_epochs=400,  # we want to train this many epochs
    verbose=1,
    )

net1.fit(X, y)

2)分类(它会引发矩阵维度的错误;我将其粘贴在下面)

import lasagne
from sklearn import datasets
import numpy as np
from lasagne import layers
from lasagne.nonlinearities import softmax
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from sklearn.preprocessing import StandardScaler

iris = datasets.load_iris()
X = iris.data[iris.target<2]  # we only take the first two features.
Y = iris.target[iris.target<2]
stdscaler = StandardScaler(copy=True, with_mean=True, with_std=True)
X = stdscaler.fit_transform(X).astype(np.float32)
y = np.asmatrix((Y-0.5)*2).T.astype(np.int32)

print X.shape, type(X)
print y.shape, type(y)

net1 = NeuralNet(
    layers=[  # three layers: one hidden layer
        ('input', layers.InputLayer),
        ('hidden', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ],
    # layer parameters:
    input_shape=(None, 4),  # 96x96 input pixels per batch
    hidden_num_units=10,  # number of units in hidden layer
    output_nonlinearity=softmax,  # output layer uses identity function
    output_num_units=1,  # 1 target value

    # optimization method:
    update=nesterov_momentum,
    update_learning_rate=0.01,
    update_momentum=0.9,

    regression=False,  # flag to indicate we're dealing with classification problem
    max_epochs=400,  # we want to train this many epochs
    verbose=1,
    )

net1.fit(X, y)

我使用代码 2 得到的失败输出。

(100, 4) <type 'numpy.ndarray'>
(100, 1) <type 'numpy.ndarray'>
  input                 (None, 4)               produces       4 outputs
  hidden                (None, 10)              produces      10 outputs
  output                (None, 1)               produces       1 outputs
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-13-184a45e5abaa> in <module>()
     40     )
     41 
---> 42 net1.fit(X, y)

/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/nolearn/lasagne/base.pyc in fit(self, X, y)
    291 
    292         try:
--> 293             self.train_loop(X, y)
    294         except KeyboardInterrupt:
    295             pass

/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/nolearn/lasagne/base.pyc in train_loop(self, X, y)
    298     def train_loop(self, X, y):
    299         X_train, X_valid, y_train, y_valid = self.train_test_split(
--> 300             X, y, self.eval_size)
    301 
    302         on_epoch_finished = self.on_epoch_finished

/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/nolearn/lasagne/base.pyc in train_test_split(self, X, y, eval_size)
    399                 kf = KFold(y.shape[0], round(1. / eval_size))
    400             else:
--> 401                 kf = StratifiedKFold(y, round(1. / eval_size))
    402 
    403             train_indices, valid_indices = next(iter(kf))

/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/sklearn/cross_validation.pyc in __init__(self, y, n_folds, shuffle, random_state)
    531         for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)):
    532             for label, (_, test_split) in zip(unique_labels, per_label_splits):
--> 533                 label_test_folds = test_folds[y == label]
    534                 # the test split can be too big because we used
    535                 # KFold(max(c, self.n_folds), self.n_folds) instead of

IndexError: too many indices for array

这里发生了什么?我在做坏事吗?我想我尝试了一切,但我无法弄清楚发生了什么。

请注意,我今天刚刚使用以下命令更新了我的千层面和依赖项:pip install -r https://raw.githubusercontent.com/dnouri/kfkd-tutorial/master/requirements.txt

提前致谢

编辑

我通过执行后续更改实现了它的工作,但我仍然有一些疑问:

  • 我将 Y 定义为具有 0/1 值的一维向量:y = Y.astype(np.int32)但我仍然有一些疑问

  • 我不得不将参数更改output_num_units=1output_num_units=2,但我不确定是否理解这一点,因为我正在处理二进制分类问题,并且我认为这个多层感知器应该只有 1 个输出神经元,而不是其中的 2 个......我是错误的?

我还尝试将成本函数更改为 ROC-AUC。我知道有一个称为默认objective_loss_function定义的参数,objective_loss_function=lasagne.objectives.categorical_crossentropy但是......我如何使用 ROC AUC 作为成本函数而不是分类交叉熵?

谢谢

4

1 回答 1

2

在 nolearn 中,如果你做分类,output_num_units你有多少类。虽然可以仅使用一个输出单元实现两类分类,但在 nolearn 中并没有以这种方式进行特殊处理,例如 [1] 中的示例:

    if not self.regression:
        predict = predict_proba.argmax(axis=1)

请注意,无论您有多少类,预测始终是 argmax(这意味着两类分类有两个输出,而不是一个)。

所以你的改变是正确的:output_num_units应该总是你拥有的类的数量,即使你有两个,并且Y应该有一个(num_samples)或者(num_samples, 1)包含表示类别的整数值的形状,而不是,例如,有一个带有每个类别的位与 shape (num_samples, num_categories)

回答您的另一个问题,千层面似乎没有ROC-AUC目标,因此您需要实施它。请注意,您不能使用 scikit-learn 中的实现,例如,因为 Lasagne 要求目标函数将 theano 张量作为参数,而不是列表或 ndarray。要了解如何在 Lasagne 中实现目标函数,您可以查看现有的目标函数 [2]。其中许多引用了 theano 内部的那些,您可以在 [3] 中看到它们的实现(它会自动滚动到binary_crossentropy,这是一个很好的目标函数示例)。

[1] https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py#L414

[2] https://github.com/Lasagne/Lasagne/blob/master/lasagne/objectives.py

[3] https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/nnet.py#L1809

于 2015-11-22T05:29:56.420 回答