3

我正在对一些地理数据运行梯度下降算法。目标是将不同的区域分配给不同的集群以最小化一些目标函数。我正在尝试制作一部短片,展示算法的进展情况。现在我的方法是在每一步绘制地图,然后使用其他一些工具从所有静态图像中制作一个小电影(非常简单)。但是,我有大约 3000 个区域要绘制,并且 plot 命令需要 90 秒或更长时间才能运行,这会杀死我的算法。

有一些明显的捷径:每第 N 次迭代保存一次图像,将所有步骤保存在一个列表中,并在最后制作所有图像(可能是并行的)。目前这一切都很好,但最终我的目标是一些交互式功能,用户可以输入一些参数并实时查看他们的地图收敛。似乎在这种情况下,动态更新地图是最好的。

有任何想法吗?这是基本命令(使用最新的 geopandas 开发版本)

fig, ax = plt.subplots(1,1, figsize=(7,5))
geo_data.plot(column='cluster',ax=ax, cmap='gist_rainbow',linewidth=0)
fig.savefig(filename, bbox_inches='tight', dpi=400)

还尝试了类似于以下的内容(下面是缩写版本)。我打开一个图,并在每次迭代中更改并保存它。似乎根本没有加快速度。

fig, ax = plt.subplots(1,1, figsize=(7,5))
plot = geo_data.plot(ax=ax)
for iter in range(100): #just doing 100 iterations now
    clusters = get_clusters(...)
    for i_d, district in  enumerate(plot.patches):
        if cluster[i] == 1
            district.set_color("#FF0000")
        else:
            district.set_color("#d3d3d3")
    fig.savefig('test'+str(iter)+'.pdf')

更新:查看了使用 matplotlib 在 while 循环中实时绘制的drawow 和其他指针,但 shapefile 似乎太大/笨重而无法实时工作。

4

1 回答 1

4

我认为有两个方面可以提高性能:1)使用matplotlib Collection(当前的geopandas实现分别绘制每个多边形)和2)只更新多边形的颜色而不是每次迭代再次绘制它(你已经这样做了,但是使用集合会简单得多)。

1) 使用 matplotlib 集合绘制多边形

这是使用 geopandas 绘制 GeoSeries 多边形的更有效绘图功能的一种可能实现:

from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import shapely

def plot_polygon_collection(ax, geoms, values=None, colormap='Set1',  facecolor=None, edgecolor=None,
                            alpha=0.5, linewidth=1.0, **kwargs):
    """ Plot a collection of Polygon geometries """
    patches = []

    for poly in geoms:

        a = np.asarray(poly.exterior)
        if poly.has_z:
            poly = shapely.geometry.Polygon(zip(*poly.exterior.xy))

        patches.append(Polygon(a))

    patches = PatchCollection(patches, facecolor=facecolor, linewidth=linewidth, edgecolor=edgecolor, alpha=alpha, **kwargs)

    if values is not None:
        patches.set_array(values)
        patches.set_cmap(colormap)

    ax.add_collection(patches, autolim=True)
    ax.autoscale_view()
    return patches

这比当前的 geopandas 绘图方法快 10 倍。

2) 更新多边形的颜色

获得图形后,可以使用该方法一步完成更新多边形集合的颜色set_array,其中数组中的值指示颜色(根据颜色图转换为颜色)

例如(考虑s_poly带有多边形的 GeoSeries):

fig, ax = plt.subplots(subplot_kw=dict(aspect='equal'))
col = plot_polygon_collection(ax, s_poly.geometry)
# update the color
col.set_array( ... )

带有一些虚拟数据的完整示例:

from shapely.geometry import Polygon

p1 = Polygon([(0, 0), (1, 0), (1, 1)])
p2 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)])
p3 = Polygon([(1, 1), (2, 1), (2, 2), (1, 2)])
s = geopandas.GeoSeries([p1, p2, p3])

绘制这个:

fig, ax = plt.subplots(subplot_kw=dict(aspect='equal'))
col = plot_polygon_collection(ax, s.geometry)

给出:

在此处输入图像描述

然后使用指示簇的数组更新颜色:

col.set_array(np.array([0,1,0]))

在此处输入图像描述

于 2015-11-17T09:57:46.923 回答