我鼓励你检查这个关于SO
NumPy/SciPy 中广义累积函数的问题?,因为你想要一个generalized cumulative function
.
还可以在此处查看函数的 scipy 文档frompyfunc
func = np.frompyfunc(f , 2 , 1)
def dostuff(n,f):
final_array = func.accumulate(np.arange(0,n), dtype=np.object).astype(np.int)
return np.sum(final_array)
例子
In [86]:
def f(num1 , num2):
return num1 + num2
In [87]:
func = np.frompyfunc(f , 2 , 1)
In [88]:
def dostuff(n,f):
final_array = func.accumulate(np.arange(0,n), dtype=np.object).astype(np.int)
return np.sum(final_array)
In [108]:
dostuff(15,f)
Out[108]:
560
In [109]:
dostuff(10,f)
Out[109]:
165
基准
def dostuff1(n, f):
array = np.arange(0, n)
for i in range(1, n): # Line 1
array[i] = f(array[i-1], array[i]) # Line 2
return np.sum(array)
def dostuff2(n,f):
final_array = func.accumulate(np.arange(0,n), dtype=np.object).astype(np.int)
return np.sum(final_array)
In [126]:
%timeit dostuff1(100,f)
10000 loops, best of 3: 40.6 µs per loop
In [127]:
%timeit dostuff2(100,f)
The slowest run took 4.98 times longer than the fastest. This could mean that an intermediate result is being cached
10000 loops, best of 3: 23.8 µs per loop