1

我面临一个(可能很简单)问题,我必须使用 PCA 降低特征向量的维数。所有这一切的重点是创建一个分类器来预测由音素组成的句子。我用人们发音的几个小时的句子训练我的模型(句子只有 10 个),每个句子都有一个由一组音素组成的标签(见下文)。

到目前为止,我所做的如下:

import mdp
from sklearn import mixture
from features import mdcc

def extract_mfcc():
    X_train = []
    directory = test_audio_folder

    # Iterate through each .wav file and extract the mfcc
    for audio_file in glob.glob(directory):
        (rate, sig) = wav.read(audio_file)
        mfcc_feat = mfcc(sig, rate)

        X_train.append(mfcc_feat)
    return np.array(X_train)

def extract_labels():
    Y_train = []

    # here I have all the labels - each label is a sentence composed by a set of phonemes
    with open(labels_files) as f:
        for line in f:  # Ex: line = AH0 P IY1 S AH0 V K EY1 K
            Y_train.append(line)
        return np.array(Y_train)

def main():
   __X_train = extract_mfcc()
   Y_train = extract_labels()

   # Now, according to every paper I read, I need to reduce the dimensionality of my mfcc vector before to feed my gaussian mixture model

   X_test = []
   for feat in __X_train:
       pca = mdp.pca(feat)
       X_test.append(pca)

   n_classes = 10 # I'm trying to predict only 10 sentences (each sentence is composed by the phonemes described above)
   gmm_classifier = mixture.GMM(n_components=n_classes, covariance_type='full')
   gmm_classifier.fit(X_train)  # error here!reason: each "pca" that I appended before in X_train has a different shape (same number of columns though)

如何减少维度,同时为我提取的每个PCA具有相同的形状?

我还尝试了一个新东西:在我获得PCA向量的 for 循环中调用gmm_classifier.fit(...)(参见下面的代码)。函数fit()有效,但我不确定我是否真的正确训练了 GMM。

n_classes = 10
gmm_classifier = mixture.GMM(n_components=n_classes, covariance_type='full')

X_test = []
for feat in __X_train:
    pca = mdp.pca(feat)
    gmm_classifier.fit(pca) # in this way it works, but I'm not sure if it actually model is trained correctly

非常感谢

4

1 回答 1

0

关于您的最后一条评论/问题:gmm_classifier.fit(pca) # 在这种方式下它可以工作,但我不确定它是否真的模型被正确训练每当你调用它时,分类器都会忘记以前的信息并且只接受训练最后的数据。尝试在循环内附加壮举,然后适应。

于 2016-06-29T20:46:42.313 回答