11

我正在使用 Keras 库来创建神经网络。我有一个 iPython Notebook 来加载训练数据、初始化网络并“拟合”神经网络的权重。最后,我使用 save_weights() 方法保存权重。代码如下:

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.regularizers import l2
from keras.callbacks import History

[...]

input_size = data_X.shape[1]
output_size = data_Y.shape[1]
hidden_size = 100
learning_rate = 0.01
num_epochs = 100
batch_size = 75

model = Sequential()
model.add(Dense(hidden_size, input_dim=input_size, init='uniform'))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(hidden_size))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(output_size))
model.add(Activation('tanh'))

sgd = SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mse', optimizer=sgd)

model.fit(X_NN_part1, Y_NN_part1, batch_size=batch_size, nb_epoch=num_epochs, validation_data=(X_NN_part2, Y_NN_part2), callbacks=[history])

y_pred = model.predict(X_NN_part2) # works well

model.save_weights('keras_w')

然后,在另一个 iPython Notebook 中,我只想使用这些权重并预测给定输入的一些输出值。我初始化相同的神经网络,然后加载权重。

# same headers
input_size = 37
output_size = 40
hidden_size = 100

model = Sequential()
model.add(Dense(hidden_size, input_dim=input_size, init='uniform'))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(hidden_size))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(output_size))
model.add(Activation('tanh'))

model.load_weights('keras_w') 
#no error until here

y_pred = model.predict(X_nn)

问题在于,显然 load_weights 方法不足以拥有功能模型。我收到一个错误:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-17-e6d32bc0d547> in <module>()
  1 
----> 2 y_pred = model.predict(X_nn)
C:\XXXXXXX\Local\Continuum\Anaconda\lib\site-packages\keras\models.pyc in predict(self, X, batch_size, verbose)
491     def predict(self, X, batch_size=128, verbose=0):
492         X = standardize_X(X)
--> 493         return self._predict_loop(self._predict, X, batch_size, verbose)[0]
494 
495     def predict_proba(self, X, batch_size=128, verbose=1):

AttributeError: 'Sequential' object has no attribute '_predict'

任何想法?非常感谢。

4

1 回答 1

14

你需要打电话model.compile。这可以在model.load_weights调用之前或之后完成,但必须在指定模型架构之后和model.predict调用之前完成。

于 2015-11-02T09:40:02.290 回答