I'm fairly new to programming and would like to know how to start implementing the following algorithm in C++,
Given a binary image where pixels with intensity 255 show edges and pixels with intensity 0 show the background, find line segments longer than n
pixels in the image. t
is a counter showing the number of iterations without finding a line, and tm
is the maximum number of iterations allowed before exiting the program.
- Let
t=0
. - Take two edge points randomly from the image and find equation of the line passing through them.
- Find
m
, the number of other edge points in the image that are within distance d pixels of the line. If
m > n
, go to Step 5.Otherwise (
m ≤ n
), incrementt
by 1 and ift < tm
go to Step 2, and ift ≥ tm
exit program.- Draw the line and remove the edge points falling within distance
d
pixels of it from the image. Then, go to Step 1
Basically, I just want to randomly pick two points from the image, find the distance between them, and if that distance is too small, I would detect a line between them.
I would appreciate if a small code snippet is provided, to get me started. this is more like a RANSAC parametric line detection. I would also keep this post updated if I get it done.
/* Display Routine */
#include "define.h"
ByteImage bimg; //A copy of the image to be viewed
int width, height; //Window dimensions
GLfloat zoomx = 1.0, zoomy = 1.0; //Pixel zoom
int win; //Window index
void resetViewer();
void reshape(int w, int h) {
glViewport(0, 0, (GLsizei)w, (GLsizei)h);
if ((w!=width) || (h!=height)) {
zoomx=(GLfloat)w/(GLfloat)bimg.nc;
zoomy=(GLfloat)h/(GLfloat)bimg.nr;
glPixelZoom(zoomx,zoomy);
}
width=w; height=h;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, (GLdouble)w, 0.0, (GLdouble)h);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void mouse(int button, int state, int x, int y) {
glutPostRedisplay();
if((button == GLUT_LEFT_BUTTON) && (state == GLUT_DOWN) &&
(zoomx==1.0) && (zoomy==1.0)){
printf(" row=%d, col=%d, int=%d.\n", y,x, (int)bimg.image[(bimg.nr-1-y)*bimg.nc+x]);
glutPostRedisplay();
}
}
void display() {
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0, 0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glDrawPixels((GLsizei)bimg.nc,(GLsizei)bimg.nr, GL_LUMINANCE,GL_UNSIGNED_BYTE, bimg.image);
glutSwapBuffers();
}