14

我需要一位 SQL 专家来帮助我加快查询速度。

我有 2 张桌子,数量和价格。数量记录 2 个时间戳之间的数量值,相隔 15 分钟。价格记录给定时间戳的价格,对于给定的价格类型,每 5 分钟有一条价格 5 记录。

我需要 2 计算出两个时间戳之间每个时间段的总价格,例如小时或天。这是通过每个时期的(数量乘以 15 分钟数量窗口中 3 个价格的平均值)的总和来计算的。

例如,假设我想查看 1 天每小时的总价格。结果集中每一行中的总价格值是该小时内四个 15 分钟时段中每个时段的总价格之和。每 15 分钟期间的总价格是通过将该期间的数量值乘以该数量期间的 3 个价格(每 5 分钟一个)的平均值来计算的。

这是我正在使用的查询和结果:

SELECT
MIN( `quantities`.`start_timestamp` ) AS `start`,
MAX( `quantities`.`end_timestamp` ) AS `end`,
SUM( `quantities`.`quantity` * (
  SELECT AVG( `prices`.`price` )
  FROM `prices`
  WHERE `prices`.`timestamp` >= `quantities`.`start_timestamp`
  AND `prices`.`timestamp` < `quantities`.`end_timestamp`
  AND `prices`.`type_id` = 1
) ) AS total
FROM `quantities`
WHERE `quantities`.`start_timestamp` >= '2010-07-01 00:00:00'
AND `quantities`.`start_timestamp` < '2010-07-02 00:00:00'
GROUP BY HOUR(  `quantities`.`start_timestamp` );

+---------------------+---------------------+----------+
| start               | end                 | total    |
+---------------------+---------------------+----------+
| 2010-07-01 00:00:00 | 2010-07-01 01:00:00 | 0.677733 |
| 2010-07-01 01:00:00 | 2010-07-01 02:00:00 | 0.749133 |
| 2010-07-01 02:00:00 | 2010-07-01 03:00:00 | 0.835467 |
| 2010-07-01 03:00:00 | 2010-07-01 04:00:00 | 0.692233 |
| 2010-07-01 04:00:00 | 2010-07-01 05:00:00 | 0.389533 |
| 2010-07-01 05:00:00 | 2010-07-01 06:00:00 | 0.335300 |
| 2010-07-01 06:00:00 | 2010-07-01 07:00:00 | 1.231467 |
| 2010-07-01 07:00:00 | 2010-07-01 08:00:00 | 0.352800 |
| 2010-07-01 08:00:00 | 2010-07-01 09:00:00 | 1.447200 |
| 2010-07-01 09:00:00 | 2010-07-01 10:00:00 | 0.756733 |
| 2010-07-01 10:00:00 | 2010-07-01 11:00:00 | 0.599467 |
| 2010-07-01 11:00:00 | 2010-07-01 12:00:00 | 1.056467 |
| 2010-07-01 12:00:00 | 2010-07-01 13:00:00 | 1.252600 |
| 2010-07-01 13:00:00 | 2010-07-01 14:00:00 | 1.285567 |
| 2010-07-01 14:00:00 | 2010-07-01 15:00:00 | 0.442933 |
| 2010-07-01 15:00:00 | 2010-07-01 16:00:00 | 0.692567 |
| 2010-07-01 16:00:00 | 2010-07-01 17:00:00 | 1.281067 |
| 2010-07-01 17:00:00 | 2010-07-01 18:00:00 | 0.652033 |
| 2010-07-01 18:00:00 | 2010-07-01 19:00:00 | 1.721900 |
| 2010-07-01 19:00:00 | 2010-07-01 20:00:00 | 1.362400 |
| 2010-07-01 20:00:00 | 2010-07-01 21:00:00 | 1.099300 |
| 2010-07-01 21:00:00 | 2010-07-01 22:00:00 | 0.646267 |
| 2010-07-01 22:00:00 | 2010-07-01 23:00:00 | 0.873100 |
| 2010-07-01 23:00:00 | 2010-07-02 00:00:00 | 0.546533 |
+---------------------+---------------------+----------+
24 rows in set (5.16 sec)

我需要查询运行得比这快得多,尽管这是可能的。这是 EXPLAIN EXTENDED 的结果...

+----+--------------------+------------+-------+-------------------+-----------------+---------+-------+-------+----------------------------------------------+
| id | select_type        | table      | type  | possible_keys     | key             | key_len | ref   | rows  | Extra                                        |
+----+--------------------+------------+-------+-------------------+-----------------+---------+-------+-------+----------------------------------------------+
|  1 | PRIMARY            | quantities | range | start_timestamp   | start_timestamp | 8       | NULL  |    89 | Using where; Using temporary; Using filesort |
|  2 | DEPENDENT SUBQUERY | prices     | ref   | timestamp,type_id | type_id         | 4       | const | 22930 | Using where                                  |
+----+--------------------+------------+-------+-------------------+-----------------+---------+-------+-------+----------------------------------------------+
2 rows in set, 3 warnings (0.00 sec)

我注意到依赖子查询没有使用键中的时间戳字段,并且查询正在扫描大量行。

任何人都可以帮我让它运行得更快吗?

以下是创建模式并用大量数据填充它所需的 SQL 语句(价值 2 个月)

# Create prices table

CREATE TABLE `prices` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `timestamp` datetime NOT NULL,
  `type_id` int(11) NOT NULL,
  `price` float(8,2) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `timestamp` (`timestamp`),
  KEY `type_id` (`type_id`)
) ENGINE=MyISAM;

# Create quantities table

CREATE TABLE `quantities` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `start_timestamp` datetime NOT NULL,
  `end_timestamp` datetime NOT NULL,
  `quantity` float(7,2) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `start_timestamp` (`start_timestamp`),
  KEY `end_timestamp` (`end_timestamp`)
) ENGINE=MyISAM;

# Insert first 2 rows into prices, one for each of 2 types, starting 64 days ago

INSERT INTO `prices` (`id`, `timestamp`, `type_id`, `price`) VALUES
(NULL, DATE_SUB(CURDATE(), INTERVAL 64 DAY), '1', RAND()),
(NULL, DATE_SUB(CURDATE(), INTERVAL 64 DAY), '2', RAND());

# Fill the prices table with a record for each type, for every 5 minutes, for the next 64 days

INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 32 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 16 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 8 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 4 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 2 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 1 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 12 HOUR), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 6 HOUR), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 3 HOUR), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 90 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 45 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 20 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 10 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 5 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_SUB(`timestamp`, INTERVAL 5 MINUTE), `type_id`, RAND() FROM prices WHERE MOD( (TIME_TO_SEC( `timestamp`) - TIME_TO_SEC(CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00')) ), 45 *60 ) = 0 AND `timestamp` > CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00');

# Insert first row into quantities, start timestamp is 64 days ago, end timestamp is start timestamp plus 15 minutes

INSERT INTO `quantities` (`id`, `start_timestamp`, `end_timestamp`, `quantity`) VALUES (NULL, DATE_SUB(CURDATE(), INTERVAL 64 DAY), DATE_SUB(CURDATE(), INTERVAL '63 23:45' DAY_MINUTE), RAND());

# Fill the quantities table with a record for each 15 minute period for the next 64 days

INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 32 DAY), DATE_ADD(`end_timestamp`, INTERVAL 32 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 16 DAY), DATE_ADD(`end_timestamp`, INTERVAL 16 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 8 DAY), DATE_ADD(`end_timestamp`, INTERVAL 8 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 4 DAY), DATE_ADD(`end_timestamp`, INTERVAL 4 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 2 DAY), DATE_ADD(`end_timestamp`, INTERVAL 2 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 1 DAY), DATE_ADD(`end_timestamp`, INTERVAL 1 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 12 HOUR), DATE_ADD(`end_timestamp`, INTERVAL 12 HOUR), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 6 HOUR), DATE_ADD(`end_timestamp`, INTERVAL 6 HOUR), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 3 HOUR), DATE_ADD(`end_timestamp`, INTERVAL 3 HOUR), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 90 MINUTE), DATE_ADD(`end_timestamp`, INTERVAL 90 MINUTE), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 45 MINUTE), DATE_ADD(`end_timestamp`, INTERVAL 45 MINUTE), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 15 MINUTE), DATE_ADD(`end_timestamp`, INTERVAL 15 MINUTE), RAND() FROM quantities;
INSERT INTO quantities (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_SUB(`start_timestamp`, INTERVAL 15 MINUTE), DATE_SUB(`end_timestamp`, INTERVAL 15 MINUTE), RAND() FROM quantities WHERE MOD( (TIME_TO_SEC( `start_timestamp`) - TIME_TO_SEC(CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00')) ), 45 * 60 ) = 0 AND `start_timestamp` > CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00');
4

3 回答 3

7

这是我的第一次尝试。这个很脏,并且在数据上使用以下属性:

  • 每个季度的数量有三个 5 分钟价格(如果在数据中违反了这一点,则查询将不起作用)
  • 注意每个和三个的基数,这不能通过数据完整性检查来保证,所以我称之为脏
  • 对周期变化也不灵活

查询一:

SELECT sql_no_cache
    min(q.start_timestamp) as start,  
    max(q.end_timestamp) as end, 
    sum((p1.price + p2.price + p3.price)/3*q.quantity) as total 
FROM 
    quantities q join 
    prices p1 on q.start_timestamp = p1.timestamp and p1.type_id = 1 join 
    prices p2 on p2.timestamp = adddate(q.start_timestamp, interval 5 minute) and p2.type_id = 1 join 
    prices p3 on p3.timestamp = adddate(q.start_timestamp, interval 10 minute) and p3.type_id = 1 
WHERE 
    q.start_timestamp between '2010-07-01 00:00:00' and '2010-07-01 23:59:59' 
GROUP BY hour(q.start_timestamp);

这个在我的慢速测试机器上以 0.01 秒返回结果,原始查询在 ~6 秒内运行,gnarf 的查询在 ~0.85 秒内运行(所有查询始终使用SQL_NO_CACHE不重用结果的关键字进行测试,但在暖数据库上)。

编辑:这是一个对价格方面的缺失行不敏感的版本查询 1a

SELECT sql_no_cache
    min(q.start_timestamp) as start,  
    max(q.end_timestamp) as end, 
    sum( ( COALESCE(p1.price,0) + COALESCE(p2.price,0) + COALESCE(p3.price,0) ) / ( 
         3 -
         COALESCE(p1.price-p1.price,1) - 
         COALESCE(p2.price-p2.price,1) - 
         COALESCE(p3.price-p3.price,1)
        )
       *q.quantity) as total 
FROM 
    quantities q LEFT JOIN 
    prices p1 on q.start_timestamp = p1.timestamp and p1.type_id = 1 LEFT JOIN
    prices p2 on p2.timestamp = adddate(q.start_timestamp, interval 5 minute) and p2.type_id = 1 LEFT JOIN
    prices p3 on p3.timestamp = adddate(q.start_timestamp, interval 10 minute) and p3.type_id = 1 
WHERE 
    q.start_timestamp between '2010-07-01 00:00:00' and '2010-07-01 23:59:59' 
GROUP BY hour(q.start_timestamp);

EDIT2:查询 2:这是对您的查询的直接改进和不同的方法,只需进行最小的更改,使我的机器上的执行时间约为 0.22 秒

SELECT sql_no_cache
MIN( `quantities`.`start_timestamp` ) AS `start`,
MAX( `quantities`.`end_timestamp` ) AS `end`,
SUM( `quantities`.`quantity` * (
  SELECT AVG( `prices`.`price` )
  FROM `prices`
  WHERE 
    `prices`.`timestamp` >= '2010-07-01 00:00:00' 
    AND `prices`.`timestamp` < '2010-07-02 00:00:00' 
    AND `prices`.`timestamp` >= `quantities`.`start_timestamp`
    AND `prices`.`timestamp` < `quantities`.`end_timestamp`
    AND `prices`.`type_id` = 1
) ) AS total
FROM `quantities`
WHERE `quantities`.`start_timestamp` >= '2010-07-01 00:00:00'
AND `quantities`.`start_timestamp` < '2010-07-02 00:00:00'
GROUP BY HOUR(  `quantities`.`start_timestamp` );

那是mysql 5.1,我想我已经读过在5.5中这种事情(合并索引)将可供查询计划者使用。此外,如果您可以通过外键使您的 start_timestamp 和时间戳相关联,这应该允许此类相关查询使用索引(但为此您需要修改设计并建立某种时间线表,然后可以引用按数量和价格计算)。

查询 3:最后,最后一个版本在 ~0.03 秒内完成,但应该与查询 2 一样健壮和灵活

SELECT sql_no_cache
MIN(start),
MAX(end),
SUM(subtotal)
FROM 
(
SELECT sql_no_cache
q.`start_timestamp` AS `start`,
q.`end_timestamp` AS `end`,
AVG(p.`price` * q.`quantity`) AS `subtotal`
FROM `quantities` q
LEFT JOIN `prices` p ON p.timestamp >= q.start_timestamp AND 
                        p.timestamp < q.end_timestamp AND
                        p.timestamp >= '2010-07-01 00:00:00' AND 
                        p.`timestamp` < '2010-07-02 00:00:00' 
WHERE q.`start_timestamp` >= '2010-07-01 00:00:00' 
AND q.`start_timestamp` < '2010-07-02 00:00:00'
AND p.type_id = 1
GROUP BY q.`start_timestamp`
) forced_tmp
GROUP BY hour( start );

注意:不要忘记在生产中删除sql_no_cache关键字。

在上述查询中应用了许多反直觉的技巧(有时在连接条件中重复的条件会加快查询速度,有时会减慢查询速度)。Mysql 是一个很棒的小型 RDBMS,当涉及到相对简单的查询时非常快,但是当复杂性增加时,很容易遇到上述情况。

所以总的来说,我应用以下原则来设定我对查询性能的期望:

  • 如果基本结果集的行数 < 1,000,则查询应在 ~0.01 秒内完成(基本结果集是在功能上确定结果集的行数)

在这种特殊情况下,您从少于 1000 行开始(一天内的所有价格和数量,精度为 15 分钟),然后您应该能够计算最终结果。

于 2010-07-22T13:21:31.203 回答
2

这应该返回相同的结果并且执行速度稍快:

SELECT
  MIN( `quantities`.`start_timestamp` ) AS `start`,
  MAX( `quantities`.`end_timestamp` ) AS `end`,
  SUM( `quantities`.`quantity` * `prices`.`price` ) 
   * COUNT(DISTINCT `quantities`.`id`) 
   / COUNT(DISTINCT `prices`.`id`)
    AS total
FROM `quantities`
JOIN `prices` ON `prices`.`timestamp` >= `quantities`.`start_timestamp`
  AND `prices`.`timestamp` < `quantities`.`end_timestamp`
  AND `prices`.`type_id` = 1
WHERE `quantities`.`start_timestamp` >= '2010-07-01 00:00:00'
  AND `quantities`.`start_timestamp` < '2010-07-02 00:00:00'
GROUP BY HOUR(  `quantities`.`start_timestamp` );

既然你不能AVG()在里面计算SUM(),我不得不做一些有趣的事情COUNT(DISTINCT)来计算prices每个返回的数量quantities。我想知道这是否会给你与“真实”数据相同的结果......

使用JOIN

+----+-------------+------------+-------+--------- ----------------------+------+---------- +------+--------+----------+----------- ------------------------------------+
| 编号 | 选择类型 | 表| 类型 | 可能的键 | 关键 | key_len | 参考 | 行 | 过滤 | 额外 |
+----+-------------+------------+-------+--------- ----------------------+------+---------- +------+--------+----------+----------- ------------------------------------+
| 1 | 简单 | 数量 | 范围 | 开始时间戳,结束时间戳 | 开始时间戳 | 8 | 空 | 89 | 100.00 | 使用哪里;使用临时的;使用文件排序 |
| 1 | 简单 | 价格 | 全部 | 时间戳,type_id | 空 | 空 | 空 | 36862 | 62.20 | 使用哪里;使用连接缓冲区 |
+----+-------------+------------+-------+--------- ----------------------+------+---------- +------+--------+----------+----------- ------------------------------------+

与相同的查询仅添加LEFTJOIN

+----+-------------+------------+-------+--------- ----------+-----------------+---------+--------+--- ----+----------+---------------------------------- ------------+
| 编号 | 选择类型 | 表| 类型 | 可能的键 | 关键 | key_len | 参考 | 行 | 过滤 | 额外 |
+----+-------------+------------+-------+--------- ----------+-----------------+---------+--------+--- ----+----------+---------------------------------- ------------+
| 1 | 简单 | 数量 | 范围 | 开始时间戳 | 开始时间戳 | 8 | 空 | 89 | 100.00 | 使用哪里;使用临时的;使用文件排序 |
| 1 | 简单 | 价格 | 参考 | 时间戳,type_id | type_id | 4 | 常量 | 22930 | 100.00 | |
+----+-------------+------------+-------+--------- ----------+-----------------+---------+--------+--- ----+----------+---------------------------------- ------------+

有趣LEFT的是,可以完全删除end_timestampas a possible key,并且对选定的键进行如此多的更改,使其花费 15 倍的时间......

如果您想查看为您的 JOINS 指定索引提示,此参考页面可以为您提供更多帮助

于 2010-07-22T11:09:06.683 回答
0

请记住,仅仅因为您的列上有索引并不一定意味着它们会运行得更快。就目前而言,创建的索引是针对每个单独的列,如果您只限制一列上的数据,它将很快返回结果。

因此,要尽量避免“使用文件排序”(您需要尽可能多地这样做),可以尝试以下索引:

CREATE INDEX start_timestamp_end_timestamp_id ON quantities (start_timestamp,end_timestamp,id);

价格表也有类似的东西(将您拥有的 3 个单独的索引组合成 1 个索引以加快查找速度)

一个很好的资源,它非常详细地解释了它以及如何优化你的索引(以及不同的解释的意思,以及目标)是:http ://hackmysql.com/case1

于 2010-07-22T11:55:52.500 回答