0

提前为问题的长度道歉,但本页的大部分内容包含分步编码,以说明我在尝试解决错误消息时的思考过程。我已使用“插入符号”将数据分为训练(70%)和测试(30%)集,用于三种监督机器学习算法,称为线性判别分析(LDA)、朴素贝叶斯(NB)和分类树(CT) R中的包(数据的可重现示例,代码如下)。因此,每个算法都使用重复的 10 倍交叉验证和 100 次运行进行训练。这是一个探索性分类练习,响应变量有 2 个类别,即家庭(即“G8”和“V4”)、12 个预测变量和 80 个观察值。如果有人对如何解决这些问题有任何见解并帮助理解错误消息,那么非常感谢。这将不胜感激,因为我对 R 比较陌生。

目标

我的目标是使用“caret”包中的“confusionMatrix”函数生成混淆矩阵。我的目标是使用这个函数来获得 Kappa 系数、分类准确度、敏感性、特异性、单向假设检验和相关统计数据。从混淆矩阵中,我打算计算归一化互信息(NMI)系数来评估模型性能。我的数据称为“mydat”(可以在本页底部找到)。

问题

(1) 对于混淆矩阵,输出错误信息为:

Error in sort.list(y) : 'x' must be atomic for 'sort.list'
Have you called 'sort' on a list? 

我尝试了不同的代码组合来解决这个问题,但无法理解这个问题

(2) 我的 NMI 分数相差很远,应该介于 0 到 1 之间。我想知道我的编码中是否有任何警告,或者反过来,是否有一种更简单、更直接的方法可以从混淆矩阵中计算 NMI (方程式如下)?

这个想法是使用“caret”包中的函数“confusionMatrix”为LDA、NB和CT输出三个单独的混淆矩阵的混淆矩阵统计数据(下面的例子):

#The example below was randomly extracted 
 from `A short introduction to the "caret" 
 package' by Max Kuhn (2015) to highlight 
 what I am attempting to achieve with my data. 
 The only text changed is the grouping factors, 
 (i.e G8 and v4).

Confusion Matrix and Statistics
Reference
Prediction G8 V4
         G8 20 7
         V4 7 17

Kappa : 0.4491
Mcnemar's Test P-Value : 1.000000
Sensitivity : 0.7407
Specificity : 0.7083
Pos Pred Value : 0.7407
eg Pred Value : 0.7083
Prevalence : 0.5294
etection Rate : 0.3922
Detection Prevalence : 0.5294
Balanced Accuracy : 0.7245
'Positive' Class : M

算法和混淆矩阵的代码

library(pROC)
library(MASS)
library(caret)
library(e1071)

# Randomly permute the data before subsetting
  mydat$Family <- factor(mydat$Family, levels = c("G8", "v4"))

  mydat_idx <- sample(1:nrow(mydat), replace = FALSE)
  mydat1 <- mydat[mydat_idx, ]

  #Produce 70 % training and 30 % test set
  mydat_resampled_idx <- createDataPartition(mydat_idx, times = 1, p = 0.7, list = FALSE)
  mydat_resampled_train <- mydat1[mydat_resampled_idx, ] # Training portion of the data
  mydat_resampled_test <- mydat1[-mydat_resampled_idx, ] # Test portion 

set.seed(1234)

重复 10 倍线性判别分析

lda_mod <-train(x = mydat_resampled_train[, 2:13], 
                y = as.factor(mydat_resampled_train[, 1]),
                method = "lda", 
                trControl = trainControl(method = "repeatedcv", number=10, repeats=100, classProbs = TRUE))

 # Generate model predictions 

 lda_pred<- predict(lda_mod, newdata = mydat_resampled_train[ , 2:13], type = "prob")
 # Store the predictions with the data set
 mydat_resampled_train['lda_pred'] <- lda_pred["G8"] # Here we only want the probability associated
 # with the class (Y = 1), or in this case, `G8'

重复 10 倍朴素贝叶斯

nb_tune <- data.frame(usekernel =TRUE, fL = 0)
nb_mod <- train(x = mydat_resampled_train[, 2:13], 
                y = as.factor(mydat_resampled_train[, 1]), 
                method = "nb", 
                trControl = trainControl(method = "repeatedcv",     number=10, repeats=100, classProbs = TRUE), 
                tuneGrid = nb_tune)

# Model predictions
nb_pred <- predict(nb_mod, newdata = mydat_resampled_train[ , 2:13], type = "prob")
mydat_resampled_train['nb_pred'] <- nb_pred["G8"]

重复 10 折分类树

ct_mod <- train(x = mydat_resampled_train[, 2:13], 
                y = as.factor(mydat_resampled_train[, 1]), 
                method = "rpart", 
                trControl = trainControl(method = "repeatedcv",     number=10, repeats=100, classProbs = TRUE))

ct_pred <- predict(ct_mod, newdata = mydat_resampled_train[ , 2:13], type = "prob")
mydat_resampled_train['ct_pred'] <- ct_pred["G8"]

混淆矩阵代码和伴随的错误信息

#LDA
confusionMatrix(lda_pred, mydat_resampled_test$Family)

#NB
confusionMatrix(nb_pred, mydat_resampled_test$Family)

#CT
confusionMatrix(ct_pred, mydat_resampled_test$Family)

每个模型都返回相同的错误消息,在网上和教程中搜索后,我仍然无法解决问题。

Error in sort.list(y) : 'x' must be atomic for 'sort.list'
Have you called 'sort' on a list?

归一化互信息 (NMI)

在此处输入图像描述

• a is the number of correct predictions that an instance is negative,
• b is the number of incorrect predictions that an instance is positive,
• c is the number of incorrect of predictions that an instance is negative,
• d is the number of correct predictions that an instance is positive,
• N is the count total

参考文献:Fielding, AH & Bell, JF (1997) 评估保护存在/不存在模型中预测误差的方法综述。环境保护, 24, 38–49。

#Equation to calculate the NMI after Fielding and Bell (1997)

NMI= -a*In(a)-b*In(b)-c*In(c)-d*In(d)+(a+b)*In(a+b)+(c+d)*In(c+d)
      -----------------------------------------------------------
            n*In(n)-((a+c)*In(a+c)+(b+d)*In(b+d))

#This is how I approached this problem

值 ad 取自 Kuhn (2015) 的上述混淆矩阵示例。

a<-20
b<-7
c<-7
d<-17
N<-80

NMI 编码

#I believe the function `solve' is used to inverse a value. Is this correct? 

NMI_top.row<-((-a)*(solve(a))-((b*solve(b))-(c*solve(c))-(d*solve(d)))+((a+b)*(solve(a+b)+(c+d)*(solve(c+d)))))
NMI_bottom.row<-(N*solve(N))-(((a+c))*(solve(a+c)+(b+d))*solve((b+d)))
NMI<-(NMI_top.row/NMI_bottom.row)

Answer: This answer is way off since it should lie between 0 to 1
        [,1]
[1,] -1.0752

#

数据

 mydat <- structure(list(Family = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("G8", "v4"), class="factor"), 
 Swimming = c(-0.4805568, 0.12600625, 0.06823834, 0.67480139, 
 0.64591744, 0.21265812, -0.01841352, 0.12600625, -0.2206012, 
 0.27042603, 0.03935439, -0.45167284, -0.04729748, -0.10506539, 
 0.0971223, -0.07618143, 0.29930998, 0.01047043, -0.24948516, 
-0.04729748, -0.01841352, -0.19171725, -0.4805568, 0.01047043, 
-0.42278889, -0.45167284, -0.30725307, 0.24154207, 1.45466817, 
-0.01841352, 0.38596185, 0.15489021, -0.04729748, 0.27042603, 
-0.07618143, -0.10506539, -0.01841352, 0.01047043, 0.06823834, 
-0.16283329, -0.01841352, -0.39390493, -0.04729748, 0.01047043, 
 0.01047043, 0.06823834, -0.04729748, -0.2206012, -0.16283329, 
-0.07618143, -0.2206012, -0.19171725, -0.16283329, -0.2206012, 
-0.13394934, -0.27836911, -0.04729748, 0.01047043, 0.12600625, 
 0.06823834, 0.06823834, 0.32819394, 0.32819394, -0.27836911, 
 0.18377416, 0.55926557, -0.19171725, -0.19171725, 0.01047043, 
-0.19171725, -0.01841352, -0.07618143, -0.13394934, -0.39390493, 
-0.04729748, -0.27836911, 0.70368535, 0.29930998, -0.13394934, 
 0.21265812), Not.Swimming = c(-0.0862927, -0.074481895, -0.056765686, 
-0.050860283, -0.050860283, -0.068576492, -0.068576492, 0.05543697, 
 0.114491, -0.021333268, -0.04495488, 0.008193747, -0.056765686, 
 0.008193747, 0.037720761, 0.01409915, 0.108585597, -0.074481895, 
 0.002288344, 0.049531567, 0.043626164, 0.049531567, 0.020004552, 
 0.008193747, 0.025909955, 0.031815358, 0.049531567, -0.039049477, 
-0.003617059, 0.002288344, 0.084963985, -0.080387298, 0.067247776, 
 0.031815358, 0.037720761, 0.025909955, 0.126301805, 0.031815358, 
 0.037720761, -0.050860283, -0.039049477, -0.003617059, 0.008193747, 
-0.039049477, -0.003617059, 0.008193747, 0.01409915, -0.015427865, 
 0.020004552, 0.031815358, 0.020004552, -0.033144074, -0.039049477, 
-0.009522462, -0.003617059, -0.04495488, -0.050860283, -0.04495488, 
-0.068576492, -0.033144074, -0.027238671, -0.068576492, 0.01409915, 
 0.002288344, 0.025909955, -0.009522462, -0.009522462, 0.025909955, 
 0.15582882, 0.002288344, -0.04495488, -0.015427865, 0.008193747, 
 0.037720761, 0.008193747, -0.015427865, -0.056765686, 0.079058582, 
-0.056765686, 0.025909955), Running = c(-0.157157188, 0.057316151, 
 0.064711783, 0.153459372, 0.072107416, 0.057316151, -0.053618335, 
 0.012942357, -0.03882707, 0.049920519, 0.012942357, -0.075805232, 
 0.035129254, -0.046222702, 0.109085578, -0.03882707, 0.057316151, 
 0.020337989, 0.035129254, 0.057316151, 0.005546724, -0.016640173, 
-0.142365923, 0.220020063, -0.149761556, -0.134970291, 0.042524886, 
 0.072107416, 0.064711783, 0.020337989, 0.049920519, 0.020337989, 
 0.138668107, 0.049920519, 0.020337989, -0.083200864, -0.024035805, 
-0.016640173, -0.03882707, -0.03882707, 0.005546724, -0.090596497, 
-0.00924454, -0.016640173, -0.075805232, -0.090596497, 0.012942357, 
-0.075805232, -0.061013967, -0.03882707, -0.112783394, -0.068409599, 
-0.090596497, -0.053618335, -0.075805232, -0.090596497, 0.064711783, 
 0.012942357, 0.042524886, -0.061013967, -0.061013967, 0.064711783, 
 0.175646269, -0.068409599, 0.027733621, 0.042524886, -0.03882707, 
-0.00924454, 0.027733621, -0.031431438, -0.046222702, -0.031431438, 
-0.068409599, -0.120179026, 0.035129254, -0.061013967, 0.39751524, 
 0.138668107, 0.020337989, 0.035129254), Not.Running = c(-0.438809944, 
-0.539013927, -0.539013927, -0.539013927, -0.472211271, -0.071395338, 
-0.071395338, 0.296019267, 0.563229889, -0.03799401, 0.195815284, 
-0.171599321, -0.305204632, 0.062209973, -0.104796666, 0.095611301, 
 0.028808645, -0.071395338, 0.329420595, 0.296019267, -0.171599321, 
-0.071395338, 0.596631217, 0.062209973, 0.028808645, -0.138197994, 
 0.095611301, -0.104796666, 0.296019267, 0.028808645, -0.03799401, 
-0.33860596, 0.129012629, 0.195815284, -0.03799401, 0.396223251, 
 0.362821923, -0.138197994, 0.26261794, -0.405408616, -0.205000649, 
 0.129012629, 0.195815284, -0.205000649, -0.004592683, -0.205000649, 
-0.071395338, -0.171599321, -0.104796666, -0.138197994, -0.104796666, 
-0.071395338, -0.104796666, -0.03799401, -0.004592683, -0.238401977, 
 0.028808645, -0.305204632, -0.305204632, -0.271803305, -0.03799401, 
-0.372007288, 0.095611301, 0.195815284, 0.162413956, 0.229216612, 
 0.229216612, 0.396223251, 0.630032545, 0.463025906, 0.496427234, 
 0.062209973, -0.071395338, 0.229216612, -0.071395338, -0.071395338, 
-0.205000649, 0.229216612, -0.305204632, 0.396223251), Fighting =      c(-0.67708172, 
-0.58224128, -0.11436177, -0.34830152, -0.84568695, -0.32933343, 
 0.35984044, -0.3251183, 1.51478626, 0.11114773, 0.27975296, 
-0.89626852, 0.12379312, 0.66965255, 1.56536783, 0.56427428, 
-0.71291033, -0.75927677, -0.75295407, -1.00164679, -1.03958296, 
 0.82139726, -1.07541157, -1.0311527, -0.98900139, -1.06908888, 
-1.20186549, 0.58324237, -0.9700333, 0.22917139, 0.41042201, 
-1.11545531, -0.19023412, 0.25446217, -0.05324237, 0.09007207, 
 1.21129685, 0.62539368, 1.32932051, 0.40199175, 0.44625062, 
 0.60221046, 0.33665722, -0.63493041, -0.282967, -0.32722587, 
-0.11646933, -0.10171637, 0.13643851, -0.57802615, 0.05002833, 
-0.1607282, -0.29139726, 0.13222338, -0.41152848, 0.68229794, 
-0.24292325, -0.11646933, -0.21341734, -0.24292325, -0.24292325, 
0.09007207, -0.34197883, -0.30825778, -0.08696342, -0.8119659, 
0.49683219, -0.13754498, -0.4831857, 0.39988418, 0.90148474, 
0.28396809, 1.05322945, 1.24923303, 0.47154141, 1.27873894, 
0.05002833, 1.54218461, 0.74763247, 0.11747042), Not.Fighting = c(-0.097624192, 
-0.160103675, -0.092996082, -0.234153433, -0.136963126, -0.15778962, 
-0.15778962, -0.023574435, 0.00188017, -0.224897213, -0.109194467, 
-0.069855533, -0.123078796, -0.111508522, -0.143905291, -0.099938247, 
-0.118450687, 1.519900201, 0.177748344, 0.108326696, 0.652129604, 
0.638245274, -0.072169588, 0.087500202, -0.18093017, -0.146219346, 
-0.049029039, -0.125392851, -0.134649071, -0.060599313, -0.086053918, 
-0.197128554, -0.083739863, -0.092996082, 0.844196163, 0.055103433, 
1.971140911, -0.111508522, -0.224897213, -0.187872334, -0.160103675, 
-0.194814499, -0.053657149, -0.206384774, 0.108326696, -0.164731785, 
0.187004564, 0.025020719, 0.057417488, 0.434608441, 0.057417488, 
0.073615872, -0.035144709, -0.051343094, -0.134649071, -0.185558279, 
0.013450444, -0.134649071, -0.215640993, -0.185558279, -0.005061995, 
-0.238781543, -0.099938247, -0.16704584, -0.208698829, 0.048161268, 
0.048161268, -0.037458764, 0.16154996, 0.031962884, -0.102252302, 
-0.123078796, -0.139277181, -0.208698829, -0.118450687, -0.072169588, 
-0.044400929, -0.030516599, -0.132335016, -0.037458764), 
Resting = c(0.01081204879, -0.03398160805, 0.057108797, -0.04063432116, 
-0.13084281035, -0.02997847693, 0.12732080268, -0.1028170581, 
0.08155320398, -0.17932134171, -0.14338902206, -0.02058415581, 
-0.11528274705, -0.11764091337, 0.04389156236, 0.01399844913, 
-0.05755560242, 0.04711630687, 0.0158428036, 0.093485909, 
0.09677967302, 0.02053612974, -0.03608286844, 0.07805238146, 
-9.686695e-05, -0.02285413055, -0.00424187149, 0.01446241356, 
0.03187450017, 0.11323315542, -0.01171898422, -0.06499053655, 
-0.07758659568, -0.07399758157, -0.11503350996, 0.02167111711, 
0.01904454162, 0.05768779393, 0.05555202379, -0.01031175326, 
-0.00458313459, 0.17430774591, 0.00481502094, -0.00928412956, 
0.09047589183, 0.08917985896, -0.05671203072, -0.05333390954, 
0.08541446168, 0.10140397965, -0.02509342995, -0.0369877908, 
0.04609635201, 0.06524159499, 0.0845977309, -0.03239032508, 
-0.03208740616, 0.06264952925, 0.05241547086, -0.03437271856, 
-0.03437271856, -0.06747523863, -0.01270059491, 0.10014629095, 
-0.02872845706, -0.00950652573, 0.04867308008, 0.02486518629, 
-0.05951115497, -0.02353665674, -0.01967923345, -0.10148651548, 
-0.00480936518, -0.00098261723, -0.13970798195, -0.00286148145, 
-0.05492902692, 0.10732815358, 0.11660744219, -0.02016620439
), Not.Resting = c(-0.77046287, 0.773856776, -2.593072768, 
-2.837675606, -1.680828329, -0.947623773, -0.947623773, -2.607366431, 
-0.637055341, -1.818396455, 2.170944974, -0.658126752, -0.808243774, 
2.377766908, 2.111220276, -0.322326312, 2.218858946, 3.920878638, 
-0.304945754, 1.038591535, 1.752268128, 0.907465624, 1.137774798, 
-3.663486997, 2.350924346, 0.067293462, -1.898454393, -2.497647463, 
-4.471716512, -1.465081244, -0.232806371, -3.043893581, -2.323908986, 
1.437404886, 1.079056696, 1.110865131, 1.404724068, -1.706664294, 
0.736746935, -0.005516985, 1.727170333, 1.685228831, 1.836016918, 
0.46617392, 1.697173771, 1.057314221, 0.933704227, 0.482480775, 
0.680713089, 0.090780703, 0.680713089, -0.982921741, -2.281900378, 
0.97208909, 0.027767791, -0.1628815, -0.530221948, -0.385741863, 
-0.972251823, 0.002267358, -1.134447998, 0.626424009, -0.722750217, 
-0.382722075, -0.356550578, -1.851614124, -1.851614124, 1.731465143, 
0.254319006, 2.043778341, -0.28991392, 1.386940871, 0.054207713, 
0.594212936, 1.551821303, 3.100704184, 0.327263666, -1.055195336, 
-1.134447998, 1.730726972), Hunting = c(-0.67708172, -0.58224128, 
-0.11436177, -0.34830152, -0.84568695, -0.32933343, 0.35984044, 
-0.3251183, 1.51478626, 0.11114773, 0.27975296, -0.89626852, 
0.12379312, 0.66965255, 1.56536783, 0.56427428, -0.71291033, 
-0.75927677, -0.75295407, -1.00164679, -1.03958296, 0.82139726, 
-1.07541157, -1.0311527, -0.98900139, -1.06908888, -1.20186549, 
0.58324237, -0.9700333, 0.22917139, 0.41042201, -1.11545531, 
-0.19023412, 0.25446217, -0.05324237, 0.09007207, 1.21129685, 
0.62539368, 1.32932051, 0.40199175, 0.44625062, 0.60221046, 
0.33665722, -0.63493041, -0.282967, -0.32722587, -0.11646933, 
-0.10171637, 0.13643851, -0.57802615, 0.05002833, -0.1607282, 
-0.29139726, 0.13222338, -0.41152848, 0.68229794, -0.24292325, 
-0.11646933, -0.21341734, -0.24292325, -0.24292325, 0.09007207, 
-0.34197883, -0.30825778, -0.08696342, -0.8119659, 0.49683219, 
-0.13754498, -0.4831857, 0.39988418, 0.90148474, 0.28396809, 
1.05322945, 1.24923303, 0.47154141, 1.27873894, 0.05002833, 
1.54218461, 0.74763247, 0.11747042), Not.Hunting = c(-0.097624192, 
-0.160103675, -0.092996082, -0.234153433, -0.136963126, -0.15778962, 
-0.15778962, -0.023574435, 0.00188017, -0.224897213, -0.109194467, 
-0.069855533, -0.123078796, -0.111508522, -0.143905291, -0.099938247, 
-0.118450687, 1.519900201, 0.177748344, 0.108326696, 0.652129604, 
0.638245274, -0.072169588, 0.087500202, -0.18093017, -0.146219346, 
-0.049029039, -0.125392851, -0.134649071, -0.060599313, -0.086053918, 
-0.197128554, -0.083739863, -0.092996082, 0.844196163, 0.055103433, 
1.971140911, -0.111508522, -0.224897213, -0.187872334, -0.160103675, 
-0.194814499, -0.053657149, -0.206384774, 0.108326696, -0.164731785, 
0.187004564, 0.025020719, 0.057417488, 0.434608441, 0.057417488, 
0.073615872, -0.035144709, -0.051343094, -0.134649071, -0.185558279, 
0.013450444, -0.134649071, -0.215640993, -0.185558279, -0.005061995, 
-0.238781543, -0.099938247, -0.16704584, -0.208698829, 0.048161268, 
0.048161268, -0.037458764, 0.16154996, 0.031962884, -0.102252302, 
-0.123078796, -0.139277181, -0.208698829, -0.118450687, -0.072169588, 
-0.044400929, -0.030516599, -0.132335016, -0.037458764), 
Grooming = c(0.01081204879, -0.03398160805, 0.057108797, 
-0.04063432116, -0.13084281035, -0.02997847693, 0.12732080268, 
-0.1028170581, 0.08155320398, -0.17932134171, -0.14338902206, 
-0.02058415581, -0.11528274705, -0.11764091337, 0.04389156236, 
0.01399844913, -0.05755560242, 0.04711630687, 0.0158428036, 
0.093485909, 0.09677967302, 0.02053612974, -0.03608286844, 
0.07805238146, -9.686695e-05, -0.02285413055, -0.00424187149, 
0.01446241356, 0.03187450017, 0.11323315542, -0.01171898422, 
-0.06499053655, -0.07758659568, -0.07399758157, -0.11503350996, 
0.02167111711, 0.01904454162, 0.05768779393, 0.05555202379, 
-0.01031175326, -0.00458313459, 0.17430774591, 0.00481502094, 
-0.00928412956, 0.09047589183, 0.08917985896, -0.05671203072, 
-0.05333390954, 0.08541446168, 0.10140397965, -0.02509342995, 
-0.0369877908, 0.04609635201, 0.06524159499, 0.0845977309, 
-0.03239032508, -0.03208740616, 0.06264952925, 0.05241547086, 
-0.03437271856, -0.03437271856, -0.06747523863, -0.01270059491, 
0.10014629095, -0.02872845706, -0.00950652573, 0.04867308008, 
0.02486518629, -0.05951115497, -0.02353665674, -0.01967923345, 
-0.10148651548, -0.00480936518, -0.00098261723, -0.13970798195, 
-0.00286148145, -0.05492902692, 0.10732815358, 0.11660744219, 
-0.02016620439), Not.Grooming = c(-0.77046287, 0.773856776, 
-2.593072768, -2.837675606, -1.680828329, -0.947623773, -0.947623773, 
-2.607366431, -0.637055341, -1.818396455, 2.170944974, -0.658126752, 
-0.808243774, 2.377766908, 2.111220276, -0.322326312, 2.218858946, 
3.920878638, -0.304945754, 1.038591535, 1.752268128, 0.907465624, 
1.137774798, -3.663486997, 2.350924346, 0.067293462, -1.898454393, 
-2.497647463, -4.471716512, -1.465081244, -0.232806371, -3.043893581, 
-2.323908986, 1.437404886, 1.079056696, 1.110865131, 1.404724068, 
-1.706664294, 0.736746935, -0.005516985, 1.727170333, 1.685228831, 
1.836016918, 0.46617392, 1.697173771, 1.057314221, 0.933704227, 
0.482480775, 0.680713089, 0.090780703, 0.680713089, -0.982921741, 
-2.281900378, 0.97208909, 0.027767791, -0.1628815, -0.530221948, 
-0.385741863, -0.972251823, 0.002267358, -1.134447998, 0.626424009, 
-0.722750217, -0.382722075, -0.356550578, -1.851614124, -1.851614124, 
1.731465143, 0.254319006, 2.043778341, -0.28991392, 1.386940871, 
0.054207713, 0.594212936, 1.551821303, 3.100704184, 0.327263666, 
-1.055195336, -1.134447998, 1.730726972), Other = c(0.019502286, 
-0.290451956, 0.359948884, 0.557840914, 0.117453376, 0.126645924, 
0.126645924, 0.196486873, 0.152780228, 0.354469789, -0.261430968, 
0.176448238, -0.007374708, -0.557848621, -0.213674557, -0.005819262, 
-0.470070992, -0.786078864, 0.006063789, -0.27184265, -0.349418792, 
-0.338096262, -0.165119403, 0.346566439, -0.344191931, 0.074321265, 
0.179825379, 0.278407054, 0.593125727, 0.199177375, -0.058900625, 
0.633875622, 0.428150308, -0.206023441, -0.436958199, -0.291839246, 
-0.907641911, 0.448567295, -0.127186127, 0.024715134, -0.41634503, 
-0.330697382, -0.469720666, -0.047494017, -0.301732446, -0.138901021, 
0.098101379, -0.002063769, -0.02832419, 0.071630763, -0.02832419, 
0.295110588, 0.347112947, -0.083577573, -0.036886152, 0.189045953, 
0.467596992, 0.303378276, 0.218879697, 0.092005711, 0.27011134, 
-0.012909856, 0.262292068, 0.107125772, 0.123422927, 0.299426602, 
0.299426602, -0.326871824, -0.022088391, -0.428508341, -0.014675497, 
-0.114462294, 0.087227267, -0.031519161, -0.159318008, -0.397875854, 
0.101520559, 0.244481505, 0.529968994, -0.32661959)), .Names =      c("Family", 
"Swimming", "Not.Swimming", "Running", "Not.Running", "Fighting", 
 "Not.Fighting", "Resting", "Not.Resting", "Hunting", "Not.Hunting", 
 "Grooming", "Not.Grooming", "Other"), class = "data.frame", row.names=c(NA, -80L))   
4

1 回答 1

1

对于混淆矩阵问题,你给它类概率(例如lda_pred)而不是因子预测。有关?confusionMatrix对象应该是什么的详细信息,请参阅。

对于 NMI,confusionMatrix将为您提供一个可以使用的表。例如:

  > library(caret)
  > 
  > set.seed(1)
  > dat <- twoClassSim(200)
  > dat2 <- twoClassSim(200)
  > 
  > set.seed(2)
  > mod <- train(Class ~ ., data = dat, method = "lda")
  > 
  > preds <- predict(mod, dat2)
  > 
  > cm <- confusionMatrix(preds, dat2$Class)
  > cm$table
            Reference
  Prediction Class1 Class2
      Class1     78     30
      Class2     17     75
于 2015-10-08T19:57:44.703 回答