1

I have been tasked with making my own Sobel method, and not use the cv::Sobel found in OpenCV. I tried implementing one I found at Programming techniques

When I run the program, cv::Mat throws an error, however. Anyone have any idea why?

Sobel method:

int sobelCorrelation(Mat InputArray, int x, int y, String xory)
{
    if (xory == "x") {
        return InputArray.at<uchar>(y - 1, x - 1) +
            2 * InputArray.at<uchar>(y, x - 1) +
            InputArray.at<uchar>(y + 1, x - 1) -
            InputArray.at<uchar>(y - 1, x + 1) -
            2 * InputArray.at<uchar>(y, x + 1) -
            InputArray.at<uchar>(y + 1, x + 1);
    }
    else if (xory == "y")
    {
        return InputArray.at<uchar>(y - 1, x - 1) +
            2 * InputArray.at<uchar>(y - 1, x) +
            InputArray.at<uchar>(y - 1, x + 1) -
            InputArray.at<uchar>(y + 1, x - 1) -
            2 * InputArray.at<uchar>(y + 1, x) -
            InputArray.at<uchar>(y + 1, x + 1);
    }
    else
    {
        return 0;
    }
}

Calling and processing it in another function:

void imageOutput(Mat image, String path) {
    image = imread(path, 0);
    Mat dst;
    dst = image.clone();
    int sum, gx, gy;
    if (image.data && !image.empty()){

        for (int y = 0; y < image.rows; y++)
            for (int x = 0; x < image.cols; x++)
                dst.at<uchar>(y, x) = 0.0;

        for (int y = 1; y < image.rows - 1; ++y) {
            for (int x = 1; x < image.cols - 1; ++x){ 
                gx = sobelCorrelation(image, x, y, "x");
                gy = sobelCorrelation(image, x, y, "y");
                sum = absVal(gx) + absVal(gy);
                if (sum > 255)
                    sum = 255;
                else if (sum < 0)
                    sum = 0;
                dst.at<uchar>(x, y) = sum;
            }
        }

        namedWindow("Original");
        imshow("Original", image);

        namedWindow("Diagonal Edges");
        imshow("Diagonal Edges", dst);

    }
    waitKey(0);
}

Main:

int main(int argc, char* argv[]) {

    Mat image;

    imageOutput(image, "C:/Dropbox/2-falling-toast-ted-kinsman.jpg");
    return 0;
}

The absVal method:

int absVal(int v)
{
    return v*((v < 0)*(-1) + (v > 0));
}

When run it throws this error:

Unhandled exception at 0x00007FFC9365A1C8 in Miniproject01.exe: Microsoft C++ exception: cv::Exception at memory location 0x000000A780A4F110.

and points to here:

template<typename _Tp> inline
_Tp& Mat::at(int i0, int i1)
{
    CV_DbgAssert( dims <= 2 && data && (unsigned)i0 < (unsigned)size.p[0] &&
        (unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels()) &&
        CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
    return ((_Tp*)(data + step.p[0] * i0))[i1];
}

If anyone have any advice or ideas what I am doing wrong it would be greatly appreciated!

4

3 回答 3

1

This code snippet is to demonstrate how to compute Sobel 3x3 derivatives convolving the image with Sobel kernels. You can easily extend to different kernel sizes giving the kernel radius as input to my_sobel, and creating the appropriate kernel.

#include <opencv2\opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;


void my_sobel(const Mat1b& src, Mat1s& dst, int direction)
{
    Mat1s kernel;
    int radius = 0;

    // Create the kernel
    if (direction == 0)
    {
        // Sobel 3x3 X kernel
        kernel = (Mat1s(3,3) << -1, 0, +1, -2, 0, +2, -1, 0, +1);
        radius = 1;
    }
    else
    {
        // Sobel 3x3 Y kernel
        kernel = (Mat1s(3, 3) << -1, -2, -1, 0, 0, 0, +1, +2, +1);
        radius = 1;
    }

    // Handle border issues
    Mat1b _src;
    copyMakeBorder(src, _src, radius, radius, radius, radius, BORDER_REFLECT101);

    // Create output matrix
    dst.create(src.rows, src.cols);

    // Convolution loop

    // Iterate on image 
    for (int r = radius; r < _src.rows - radius; ++r)
    {
        for (int c = radius; c < _src.cols - radius; ++c)
        {
            short s = 0;

            // Iterate on kernel
            for (int i = -radius; i <= radius; ++i)
            {
                for (int j = -radius; j <= radius; ++j)
                {
                    s += _src(r + i, c + j) * kernel(i + radius, j + radius);
                }
            }
            dst(r - radius, c - radius) = s;
        }
    }
}

int main(void)
{
    Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);

    // Compute custom Sobel 3x3 derivatives
    Mat1s sx, sy;
    my_sobel(img, sx, 0);
    my_sobel(img, sy, 1);

    // Edges L1 norm
    Mat1b edges_L1;
    absdiff(sx, sy, edges_L1);


    // Check results against OpenCV
    Mat1s cvsx,cvsy;
    Sobel(img, cvsx, CV_16S, 1, 0);
    Sobel(img, cvsy, CV_16S, 0, 1);
    Mat1b cvedges_L1;
    absdiff(cvsx, cvsy, cvedges_L1);

    Mat diff_L1;
    absdiff(edges_L1, cvedges_L1, diff_L1);

    cout << "Number of different pixels: " << countNonZero(diff_L1) << endl;

    return 0;
}
于 2015-10-11T18:16:13.030 回答
1

If i were you, i would almost always avoid using for loops(if possible). Unnecessary for loops tend to slow down the execution. Instead, reuse wherever possible. For example, the code below uses filter2D give 2d Correlation result:

Mat kern = (Mat_<float>(3,3)<<-1,0,1,-2,0,2,-1,0,1);
Mat dest;
cv::filter2D(src,dest,src.type(),kern);

If you would like to get convolution results, you would need to flip the kernel 'kern' before filtering.

cv::flip(kern,kern, -1);

If you would like to squeeze more performance, you can use separable filters 'sepFilter2D'.

于 2017-02-04T04:37:24.483 回答
0

thanks for the post, I was able to generate gradiant map using the above kernel, and using openCV code filter2D getting from Using custom kernel in opencv 2DFilter - causing crash ... convolution how?

to convolve the image with the kernel. the code that I used is

    #include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>

using namespace cv;
using namespace std;

int main(int argc, char** argv) {

    //Loading the source image
    Mat src;
    //src = imread("1.png");
    src = cv::imread("E:\\Gray_Image.bmp", 0);
    //Output image of the same size and the same number of channels as src.
    Mat dst1,dst2,grad;
    //Mat dst = src.clone();   //didn't help...

    //desired depth of the destination image
    //negative so dst will be the same as src.depth()
    int ddepth = -1;

    //the convolution kernel, a single-channel floating point matrix:


    //Mat kernel = imread("kernel.png");

    Mat kernel_x = (Mat_<float>(3, 3) << -1, 0, 1, -2, 0, 2, -1, 0, 1);

    Mat kernel_y = (Mat_<float>(3, 3) << -1, -2, -1, 0, 0, 0, 1, 2, 1);
    kernel_x.convertTo(kernel_x, CV_32F);  kernel_y.convertTo(kernel_y, CV_32F);   //<<not working
                                          //normalize(kernel, kernel, 1.0, 0.0, 4, -1, noArray());  //doesn't help

                                          //cout << kernel.size() << endl;  // ... gives 11, 11

                                          //however, the example from tutorial that does work:
                                          //kernel = Mat::ones( 11, 11, CV_32F )/ (float)(11*11);

                                          //default value (-1,-1) here means that the anchor is at the kernel center.
    Point anchor = Point(-1, -1);

    //value added to the filtered pixels before storing them in dst.
    double delta = 0;

    //alright, let's do this...
    filter2D(src, dst1, ddepth, kernel_x, anchor, delta, BORDER_DEFAULT);
    filter2D(src, dst2, ddepth, kernel_y, anchor, delta, BORDER_DEFAULT);

    imshow("Source", src);     //<< unhandled exception here
    //imshow("Kernel1", kernel_x);  imshow("Kernel2", kernel_y);
    imshow("Destination1", dst1);
    imshow("Destination2", dst2);
    addWeighted(dst1, 0.5, dst2, 0.5, 0, grad);
    imshow("Destination3", grad);
    waitKey(1000000);

    return 0;
}
于 2017-05-08T14:12:01.387 回答