Google 的 App Engine 是否有过多的停机时间,特别是在数据存储写入方面?
此外,停机时间似乎安排在交通繁忙时间,例如,在下午中间与早上 3:00 AM。这是正常的吗?随着技术的成熟,它会改善吗?
Google 的 App Engine 是否有过多的停机时间,特别是在数据存储写入方面?
此外,停机时间似乎安排在交通繁忙时间,例如,在下午中间与早上 3:00 AM。这是正常的吗?随着技术的成熟,它会改善吗?
下午与清晨的停机时间。与凌晨(太平洋时间;包括 put、update 和 delete 可用性)相比,下午数据存储不可用的写入频率大约高出 20-30%。
注意:我确信 Google 希望在非高峰时段发生停机。因此,我希望他们会继续尝试尽量减少停机时间,或者尽可能将其安排在非高峰时间。
停机时间趋势。 数据存储不可用的 15 分钟周期数一直在减少。在过去 366 天中,每天平均有 3.8 个 15 分钟的数据存储不可用。在过去的 200 天里,这一数字下降了60%,降至每天 2.3 个。过去几个月的写入停机时间实际上相当不错 - 自 3 月 1 日以来,每天的写入停机时间少于 0.25 个 15 分钟。这是数据存储写入停机 时间的图表:停机时间趋势 http://imagebin.ca/img/4wkHVQPc.png
为了回答您的问题,我编写了这个脚本,它从GAE 的数据存储状态页面中提取停机时间数据。
替代文字 http://imagebin.ca/img/p9ScWTm.png
替代文字 http://imagebin.ca/img/9FbLut2G.png
替代文字 http://imagebin.ca/img/t3XKLk.png
替代文字 http://imagebin.ca/img/k36T9h.png
(如果您想使用稍微不同的参数收集自己的数据,您可以调整脚本顶部的变量):
# RAW Data: Each element counts the number of days in which the datastore
# was unavailable for at least some portion of a given 15-minute window. The
# first element corresponds to the time chunk from 00:00 to 00:15, and so on.
RESULTS_SINCE_2010JAN01_BIN15 = [0, 0, 0, 0, 3, 11, 3, 3, 3, 3, 12, 3, 3, 3, 4, 14, 4, 4, 4, 4, 12, 2, 2, 2, 2, 14, 4, 4, 4, 4, 11, 2, 2, 2, 2, 11, 5, 5, 5, 5, 13, 4, 4, 4, 4, 14, 7, 5, 5, 5, 14, 4, 3, 3, 3, 13, 2, 2, 2, 2, 12, 5, 4, 4, 4, 14, 5, 3, 3, 3, 12, 7, 2, 2, 2, 5, 5, 0, 0, 0, 2, 9, 3, 2, 2, 2, 10, 1, 1, 1, 2, 9, 3, 3, 3, 15]
RESULTS_SINCE_2009JUL20_BIN15 = [0, 0, 0, 0, 11, 21, 5, 5, 5, 5, 29, 6, 6, 6, 7, 38, 11, 11, 11, 11, 37, 7, 7, 7, 7, 44, 12, 12, 12, 12, 37, 10, 10, 10, 10, 34, 7, 7, 7, 7, 46, 11, 11, 11, 11, 39, 15, 13, 13, 13, 44, 13, 12, 12, 12, 44, 5, 5, 5, 5, 34, 11, 10, 10, 10, 40, 13, 11, 11, 11, 31, 21, 12, 12, 11, 19, 21, 4, 4, 4, 13, 28, 10, 9, 9, 16, 36, 10, 10, 10, 12, 32, 7, 7, 6, 35]
RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN15 = [0, 0, 0, 0, 4, 12, 4, 4, 4, 4, 22, 6, 6, 6, 7, 27, 7, 7, 7, 7, 21, 6, 6, 6, 6, 32, 9, 9, 9, 9, 26, 8, 8, 8, 8, 27, 7, 7, 7, 7, 30, 7, 7, 7, 7, 27, 10, 8, 8, 8, 28, 10, 9, 9, 9, 28, 4, 4, 4, 4, 21, 4, 4, 4, 4, 25, 6, 4, 4, 4, 18, 14, 9, 10, 9, 16, 17, 2, 2, 2, 8, 18, 7, 6, 6, 9, 19, 5, 5, 5, 6, 18, 5, 5, 4, 21]
# RESULTS DISTILLED FROM COLLECTED_RESULTS
RESULTS_SINCE_2010JAN01_BIN60 = [RESULTS_SINCE_2010JAN01_BIN15[i*4]+RESULTS_SINCE_2010JAN01_BIN15[i*4+1]+RESULTS_SINCE_2010JAN01_BIN15[i*4+2]+RESULTS_SINCE_2010JAN01_BIN15[i*4+3] for i in xrange(24)]
RESULTS_SINCE_2010JAN01_BIN240 = [RESULTS_SINCE_2010JAN01_BIN60[i*4]+RESULTS_SINCE_2010JAN01_BIN60[i*4+1]+RESULTS_SINCE_2010JAN01_BIN60[i*4+2]+RESULTS_SINCE_2010JAN01_BIN60[i*4+3] for i in xrange(6)]
RESULTS_SINCE_2010JAN01_BIN480 = [RESULTS_SINCE_2010JAN01_BIN60[i*2]+RESULTS_SINCE_2010JAN01_BIN60[i*2+1] for i in xrange(3)]
RESULTS_SINCE_2009JUL20_BIN60 = [RESULTS_SINCE_2009JUL20_BIN15[i*4]+RESULTS_SINCE_2009JUL20_BIN15[i*4+1]+RESULTS_SINCE_2009JUL20_BIN15[i*4+2]+RESULTS_SINCE_2009JUL20_BIN15[i*4+3] for i in xrange(24)]
RESULTS_SINCE_2009JUL20_BIN240 = [RESULTS_SINCE_2009JUL20_BIN60[i*4]+RESULTS_SINCE_2009JUL20_BIN60[i*4+1]+RESULTS_SINCE_2009JUL20_BIN60[i*4+2]+RESULTS_SINCE_2009JUL20_BIN60[i*4+3] for i in xrange(6)]
RESULTS_SINCE_2009JUL20_BIN480 = [RESULTS_SINCE_2009JUL20_BIN240[i*2]+RESULTS_SINCE_2009JUL20_BIN240[i*2+1] for i in xrange(3)]
RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN60 = [RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN15[i*4]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN15[i*4+1]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN15[i*4+2]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN15[i*4+3] for i in xrange(24)]
RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN240 = [RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN60[i*4]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN60[i*4+1]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN60[i*4+2]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN60[i*4+3] for i in xrange(6)]
RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN480 = [RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN240[i*2]+RESULTS_WRITE_DOWNTIME_SINCE_2009JUL20_BIN240[i*2+1] for i in xrange(3)]