3

现在我正在尝试教 g++ 编译器线性代数,以便 g++ 可以重写表达式,例如(matrix * vector)(index)用于评估表达式的循环。基本上,这就是我所期望的作为“富有表现力的 C++ ”系列最后一篇文章的下一篇文章。上一篇文章解释了如何制作用于添加向量的 EDSL,因此我编写了另一个用于将矩阵乘以向量的 EDSL。

但是当我自己的矩阵和向量类的 Proto 域的名称作为第一个宏参数传递时,无法编译 BOOST_PROTO_DEFINE_OPERATORS 宏。

所以我想知道 Proto 转换是否有可能评估矩阵和向量对象的混合表达式。似乎没有可以编译的示例代码,Proto 用户指南 1.57.0中“将现有类型适配到 Proto”中的示例代码虽然是关于如何将现有矩阵和向量类型适配到 Proto,但并不完整。

我很茫然..你能给我一些建议或提示吗?

这是我的源代码。如果您能建议我如何解决它,我将不胜感激:

#include <iostream>
#include <boost/proto/proto.hpp>

namespace mpl = boost::mpl;
namespace proto = boost::proto;

namespace LinAlg {
    class Vector;
    class Matrix;

    // Functor for lazy evaluation
    struct ElmOfMatVecMult;

    // The grammar for an expression like ( matrix * vector )(index)
    struct MatVecMultElmGrammar : proto::or_<
        proto::when< proto::multiplies< Matrix, Vector>,
                    proto::_make_function( ElmOfMatVecMult,
                                            proto::_left, proto::_right,
                                            proto::_state) >
    > {};

    // The grammar for a vector expression
    // ( Now I consider just one form : matrix * vector . )
    struct VecExprGrammar : proto::or_<
        proto::when< proto::function< MatVecMultElmGrammar, proto::_>,
                    MatVecMultElmGrammar( proto::_left, proto::_right) >,
        proto::multiplies< Matrix, Vector>
    > {};

    template<typename E> struct Expr;

    // The above grammar is associated with this domain.
    struct Domain
        : proto::domain<proto::generator<Expr>, VecExprGrammar>
    {};

    // A wrapper template for linear algebraic expressions
    // including matrices and vectors
    template<typename ExprType>
    struct Expr
        : proto::extends<ExprType, Expr<ExprType>, Domain>
    {
        explicit Expr(const ExprType& e)
            : proto::extends<ExprType, Expr<ExprType>, Domain>(e)
        {}
    };

    // Testing if data in an heap array can be a vector object
    class Vector {
        private:
            int sz;
            double* data;

    public:
        template <typename Sig> struct result;

        template <typename This, typename T>
        struct result< This(T) > { typedef double type; };

        typedef double result_type;

        explicit Vector(int sz_ = 1, double iniVal = 0.0) :
            sz( sz_), data( new double[sz] ) {
            for (int i = 0; i < sz; i++) data[i] = iniVal;
            std::cout << "Created" << std::endl;
        }
        Vector(const Vector& vec) :
            sz( vec.sz), data( new double[sz] ) {
            for (int i = 0; i < sz; i++) data[i] = vec.data[i];
            std::cout << "Copied! " << std::endl;
        }

        ~Vector() {
            delete [] data;
            std::cout << "Deleted" << std::endl;
        }

        // accessing to an element of this vector
        double& operator()(int i) { return data[i]; }
        const double& operator()(int i) const { return data[i]; }
    };


    // Testing if data in an heap array can be a matrix object
    class Matrix
    {
    private:
        int rowSz, colSz;
        double* data;
        double** m;

    public:
        template <typename Signature> struct result;

        template <typename This, typename T>
        struct result< This(T,T) > { typedef double type; };

        explicit Matrix(int rowSize = 1, int columnSize =1,
                    double iniVal = 0.0) :
            rowSz( rowSize), colSz(columnSize),
            data( new double[rowSz*colSz] ), m( new double*[rowSz])
        {
            for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
            for (int ri = 0; ri < rowSz; ri++)
                for (int ci = 0; ci < colSz; ci++) m[ri][ci] = iniVal;
            std::cout << "Created" << std::endl;
        }

        Matrix(const Matrix& mat) :
            rowSz( mat.rowSz), colSz( mat.colSz),
            data( new double[rowSz*colSz] ), m( new double*[rowSz])
        {
            for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
                for (int ri = 0; ri < rowSz; ri++)
                    for (int ci = 0; ci < colSz; ci++)
                        m[ri][ci] = mat.m[ri][ci];
                std::cout << "Copied! " << std::endl;
        }

        ~Matrix()
        {
            delete [] m;
            delete [] data;
            std::cout << "Deleted" << std::endl;
        }

        int rowSize() const { return rowSz; }
        int columnSize() const { return colSz; }

        // accesing to a vector element
        double& operator()(int ri, int ci) { return m[ri][ci]; }
        const double& operator()(int ri, int ci) const { return m[ri][ci]; }
    };

    // An expression like ( matrix * vector )(index) is transformed
    // into the loop for calculating the dot product between
    // the vector and matrix.
    struct ElmOfMatVecMult
    {
        double operator()( Matrix const& mat, Vector const& vec,
                        int index) const
        {
            double elm = 0.0;
            for (int ci =0;  ci < mat.columnSize(); ci++)
                elm += mat(index, ci) * vec(ci);
            return elm;
        }
    };

    // Define a trait for detecting linear algebraic terminals, to be used
    // by the BOOST_PROTO_DEFINE_OPERATORS macro below.
    template<typename> struct IsExpr  : mpl::false_ {};
    template<> struct IsExpr< Vector> : mpl::true_  {};
    template<> struct IsExpr< Matrix> : mpl::true_  {};

    // This defines all the overloads to make expressions involving
    // Vector and Matrix objects to build Proto's expression templates.
    BOOST_PROTO_DEFINE_OPERATORS(IsExpr, Domain)
}

int main()
{
    using namespace LinAlg;

    proto::_default<> trans;

    Matrix mat( 3, 3);
    Vector vec1(3);

    mat(0,0) = 1.00; mat(0,1) = 1.01; mat(0,2) = 1.02;
    mat(1,0) = 1.10; mat(1,1) = 1.11; mat(1,2) = 1.12;
    mat(2,0) = 1.20; mat(2,1) = 1.21; mat(2,2) = 1.22;

    vec1(0) = 1.0;
    vec1(1) = 2.0;
    vec1(2) = 3.0;

    proto::display_expr( ( mat * vec1)(2) );
    proto::display_expr( VecExprGrammar()( ( mat * vec1)(2) );
    double vecElm = trans( VecExprGrammar()( ( mat * vec1)(2) );

    return 0;
}
4

1 回答 1

1

我以某种方式确认我的问题的答案是“是”。让我的源代码工作的诀窍是定义一个活动语法,用于用一个MatVecMult对象替换矩阵 * 向量,并将其定义MatVecMult为一个proto::callable用于制作惰性求值函子的对象,LazyMatVecMult. 当LazyMatVecMult使用 调用此实例时operator()(int index),它会计算矩阵的第 index 行与向量的点积。

(很抱歉自己回答了我的问题。但我认为并不是只有我一个人偶然发现了如何为向量和矩阵表达式制作基于 Proto 的 EDSL。)

此源代码已确认可与 g++ 4.8.4 一起使用:

#include <iostream>
#include <boost/proto/proto.hpp>

namespace mpl = boost::mpl;
namespace proto = boost::proto;

namespace LinAlg {
    class Vector;
    class Matrix;


    // Callable transform object to make a proto exression
    // for lazily evaluationg a. multiplication
    struct MatVecMult;

    // The grammar for the multiplication of a matrix and a vector
    struct MatVecMultGrammar : proto::or_<
        proto::when<
            proto::multiplies< proto::terminal< Matrix> ,
                                proto::terminal< Vector> >,
            MatVecMult( proto::_value( proto::_left),
                        proto::_value( proto::_right) )
        >
    > {};

    // The grammar for a vector expression
    // ( Now I consider just one form : matrix * vector . )
    struct VecExprGrammar : proto::or_<
        proto::function< MatVecMultGrammar, proto::_>,
        MatVecMultGrammar
    > {};


    // A wrapper for a linear algebraic expression
    template<typename E> struct Expr;

    // The above grammar is associated with this domain.
    struct Domain
        : proto::domain<proto::generator<Expr>, VecExprGrammar>
    {};

    // A wrapper template for linear algebraic expressions
    // including matrices and vectors
    template<typename ExprType>
    struct Expr
        : proto::extends<ExprType, Expr<ExprType>, Domain>
    {
        /* typedef double result_type; */

        explicit Expr(const ExprType& e)
            : proto::extends<ExprType, Expr<ExprType>, Domain>(e)
        {}
    };


    // Testing if data in an heap array can be a vector object
    class Vector {
        private:
            int sz;
            double* data;

    public:
        explicit Vector(int sz_ = 1, double iniVal = 0.0) :
            sz( sz_), data( new double[sz] ) {
            for (int i = 0; i < sz; i++) data[i] = iniVal;
            std::cout << "Created" << std::endl;
        }
        Vector(const Vector& vec) :
            sz( vec.sz), data( new double[sz] ) {
            for (int i = 0; i < sz; i++) data[i] = vec.data[i];
            std::cout << "Copied! " << std::endl;
        }

        ~Vector() {
            delete [] data;
            std::cout << "Deleted" << std::endl;
        }

        // accessing to an element of this vector
        double& operator()(int i) { return data[i]; }
        const double& operator()(int i) const { return data[i]; }
    };


    // Testing if data in an heap array can be a matrix object
    class Matrix
    {
    private:
        int rowSz, colSz;
        double* data;
        double** m;

    public:

        explicit Matrix(int rowSize = 1, int columnSize =1,
                    double iniVal = 0.0) :
            rowSz( rowSize), colSz(columnSize),
            data( new double[rowSz*colSz] ), m( new double*[rowSz])
        {
            for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
            for (int ri = 0; ri < rowSz; ri++)
                for (int ci = 0; ci < colSz; ci++) m[ri][ci] = iniVal;
            std::cout << "Created" << std::endl;
        }

        Matrix(const Matrix& mat) :
            rowSz( mat.rowSz), colSz( mat.colSz),
            data( new double[rowSz*colSz] ), m( new double*[rowSz])
        {
            for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
                for (int ri = 0; ri < rowSz; ri++)
                    for (int ci = 0; ci < colSz; ci++)
                        m[ri][ci] = mat.m[ri][ci];
                std::cout << "Copied! " << std::endl;
        }

        ~Matrix()
        {
            delete [] m;
            delete [] data;
            std::cout << "Deleted" << std::endl;
        }

        int rowSize() const { return rowSz; }
        int columnSize() const { return colSz; }

        // accesing to a vector element
        double& operator()(int ri, int ci) { return m[ri][ci]; }
        const double& operator()(int ri, int ci) const { return m[ri][ci]; }

    };

    // Lazy function object for evaluating an element of
    // the resultant vector from the multiplication of
    // a matrix and vector objects.
    //
    // An expression like ( matrix * vector )(index) is transformed
    // into the loop for calculating the dot product between
    // the index'th row of the matrix and the vector.
    struct LazyMatVecMult
    {
        Matrix const& m;
        Vector const& v;
        int mColSz;

        typedef double result_type;
        // typedef mpl::int_<1> proto_arity;

        explicit LazyMatVecMult(Matrix const& mat, Vector const& vec) :
        m( mat), v( vec), mColSz(mat.rowSize()) {}

        LazyMatVecMult(LazyMatVecMult const& lazy) :
            m(lazy.m), v(lazy.v), mColSz(lazy.mColSz) {}

        result_type operator()(int index) const
        {
            result_type elm = 0.0;
            for (int ci =0;  ci < mColSz; ci++)
                elm += m(index, ci) * v(ci);
            return elm;
        }
    };

    // Callable transform object to make the lazy functor
    // a proto exression for lazily evaluationg the multiplication
    // of a matrix and a vector .
    struct MatVecMult : proto::callable
    {
        typedef proto::terminal< LazyMatVecMult >::type result_type;

        result_type
        operator()( Matrix const& mat, Vector const& vec) const
        {
            return proto::as_expr( LazyMatVecMult(mat, vec) );
        }
    };

    // Define a trait for detecting linear algebraic terminals, to be used
    // by the BOOST_PROTO_DEFINE_OPERATORS macro below.
    template<typename> struct IsExpr  : mpl::false_ {};
    template<> struct IsExpr< Vector> : mpl::true_  {};
    template<> struct IsExpr< Matrix> : mpl::true_  {};
    // template<> struct IsExpr< MatVecMult> : mpl::true_  {};
    template<> struct IsExpr< LazyMatVecMult> : mpl::true_  {};

    // This defines all the overloads to make expressions involving
    // Vector and Matrix objects to build Proto's expression templates.
    BOOST_PROTO_DEFINE_OPERATORS(IsExpr, Domain)
    // BOOST_PROTO_DEFINE_OPERATORS(IsExpr, proto::default_domain)


}



int main()
{
    using namespace LinAlg;

    proto::_default<> trans;

    Matrix mat( 3, 3);
    Vector vec1(3), vec2(3);

    mat(0,0) = 1.00; mat(0,1) = 1.01; mat(0,2) = 1.02;
    mat(1,0) = 1.10; mat(1,1) = 1.11; mat(1,2) = 1.12;
    mat(2,0) = 1.20; mat(2,1) = 1.21; mat(2,2) = 1.22;

    vec1(0) = 1.0;
    vec1(1) = 2.0;
    vec1(2) = 3.0;

    std::cout << " mat * vec1" << std::endl;
    proto::display_expr( mat * vec1 );
    std::cout << " MatVecMultGrammar()( mat * vec1) " << std::endl;
    proto::display_expr( MatVecMultGrammar()( mat * vec1) );

    std::cout << "( mat * vec1)(2)" << std::endl;
    proto::display_expr( ( mat * vec1)(2) );
    std::cout << "VecExprGrammar()( ( mat * vec1)(2) )" << std::endl;
    proto::display_expr( VecExprGrammar()( ( mat * vec1)(2) ) );
    double elm2 = trans( VecExprGrammar()( ( mat * vec1)(2) ) );

    std::cout << "( mat * vec1)(2) = " << elm2 << std::endl;

    return 0;
}
于 2015-10-06T05:34:29.457 回答