0

我有来自交通数据分析的事故输入数据。一些列是:

事故 ID、事故日期、星期几

1, 1/1/1979, 5 (星期四)

2, 1/2/1979, 6 (星期五)

…………

3, 1/1/1980, 0 (星期日)

我正在尝试解决以下问题:

查找每年每天发生的事故数量

所以输出应该是这样的:

其中键是(年,星期几)

并且值=当天的事故数这里第1行代表,年=1979日=星期天,事故数=500等等。

1979,1     500

1979,2    1500

1979,3    2500

1979,4    3500

1979,5    4500

1979,6    5500

1979,7    6500

1980,1     500

1980,2    1500

1980,3    2500

1980,4    3500

1980,5    4500

在这种情况下,我尝试使用辅助排序方法来解决它。这是解决这个问题的正确方法吗?

如果二级排序是正确的方法,它对我不起作用。这里是关键类,mapper和reducer。但是我的输出并没有达到预期。请帮忙 ..

public class DOW implements WritableComparable<DOW> {
    private Text year;
    private Text day;

    // private final Text count;

    // private int count;
    public DOW() {
        this.year = new Text();
        this.day = new Text();
        // this.count = count;
    }

    public DOW(Text year, Text day) {
        this.year = year;
        this.day = day;
        // this.count = count;
    }

    public Text getYear() {
        return this.year;
    }

    public void setYear(Text year) {
        this.year = year;
    }

    public Text getDay() {
        return this.day;
    }

    public void setDay(Text day) {
        this.day = day;
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        // TODO Auto-generated method stub
        year.readFields(in);
        day.readFields(in);

    }

    @Override
    public void write(DataOutput out) throws IOException {
        // TODO Auto-generated method stub
        year.write(out);
        day.write(out);
    }

    @Override
    public int compareTo(DOW o) {
        // TODO Auto-generated method stub
        int cmp = year.compareTo(o.year);
        if (cmp != 0) {
            return cmp;
        }
        return o.day.compareTo(this.day);
    }

    @Override
    public String toString() {
        // TODO Auto-generated method stub
        return year + "," + day;
    }

    @Override
    public boolean equals(Object o) {
        // TODO Auto-generated method stub
        if (o instanceof DOW) {
            DOW tp = (DOW) o;
            return year.equals(tp.year) && day.equals(tp.day);
        }
        return false;
    }

    @Override
    public int hashCode() {
        // TODO Auto-generated method stub
        return year.hashCode() * 163 + day.hashCode();
    }
}
public class AccidentDowDemo extends Configured implements Tool {

    public static class DOWMapper extends Mapper<LongWritable, Text, DOW, IntWritable> {
        private static final Logger sLogger = Logger.getLogger(DOWMapper.class);

        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws java.io.IOException, InterruptedException {

            if (value.toString().contains(",")) {
                String[] array = value.toString().split(",");
                if (!array[9].equals("Date")) {
                    Date dt = null;
                    try {
                        dt = new SimpleDateFormat("dd/mm/yyyy").parse(array[9]);

                    } catch (ParseException e) {
                        // TODO Auto-generated catch block

                        e.printStackTrace();
                    }

                    int year = dt.getYear();

                    int day = Integer.parseInt(array[10].toString());
                                        context.write(new DOW(new Text(Integer.toString(year)),
                            new Text(Integer.toString(day))),
                            new IntWritable(1));
                }
            }
        };
    }

    public static class DOWReducer extends Reducer<DOW, IntWritable, DOW, IntWritable> {
        private static final Logger sLogger = Logger
                .getLogger(DOWReducer.class);

        @Override
        protected void reduce(DOW key, Iterable<IntWritable> values,
                Context context) throws java.io.IOException,
                InterruptedException {
            int count = 0;
            sLogger.info("key =" + key);
            for (IntWritable x : values) {
                int val = Integer.parseInt(x.toString());
                count = count + val;
            }
            context.write(key, new IntWritable(count));
        };
    }

    public static class FirstPartitioner extends Partitioner<DOW, IntWritable> {

        @Override
        public int getPartition(DOW key, IntWritable value, int numPartitions) {
            // TODO Auto-generated method stub

            return Math.abs(Integer.parseInt(key.getYear().toString()) * 127)
                    % numPartitions;
        }
    }

    public static class KeyComparator extends WritableComparator {
        protected KeyComparator() {
            super(DOW.class, true);
        }

        @Override
        public int compare(WritableComparable w1, WritableComparable w2) {
            // TODO Auto-generated method stub

            DOW ip1 = (DOW) w1;
            DOW ip2 = (DOW) w2;
            int cmp = ip1.getYear().compareTo(ip2.getYear());
            if (cmp == 0) {
                cmp = -1 * ip1.getDay().compareTo(ip2.getDay());
            }
            return cmp;
        }
    }

    public static class GroupComparator extends WritableComparator {
        protected GroupComparator() {
            super(DOW.class, true);
        }

        @Override
        public int compare(WritableComparable w1, WritableComparable w2) {

            // TODO Auto-generated method stub
            DOW ip1 = (DOW) w1;
            DOW ip2 = (DOW) w2;
            return ip1.getYear().compareTo(ip2.getYear());
        }
    }
}
4

2 回答 2

0

如果你需要基本模拟

select year, day, count(*) as totalPerDay from DATA group by year, day

比你不需要二次排序。

但是,如果您需要生成像 CUBE 之类的东西,您需要计算一项 MR 工作中每年的总数和每周的总数,那么二次排序是可行的方法。

于 2015-09-09T15:25:52.963 回答
0

它或多或少是一种二次排序,但不是。问题在于 GroupComparator,必须在年和日进行比较。groupcomarator 的想法是确保同一年确实进入同一个减速器,但在这里我们不需要,相反,如果数据具有相同的年份和同一天(1979 年和星期日),则数据必须进入同一个减速器。它应该看起来像这样。

package accidentexercise;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class ClassGroupComparator extends WritableComparator
{
    protected ClassGroupComparator()
    {
        super(TextpairWritable.class,true);
    }
    @SuppressWarnings("rawtypes")
    public int compare(WritableComparable w,WritableComparable w1)
    {
        TextpairWritable s=(TextpairWritable)w;
        TextpairWritable s1=(TextpairWritable)w1;
        int cmp= s.year.compareTo(s1.year);

            if(cmp==0)
            {
                cmp= -1*s.day.compareTo(s1.day);
            }
            return cmp;
    }
}

我也在粘贴我的整个代码。

TextpairWritable:

package accidentexercise;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

public class TextpairWritable implements WritableComparable<TextpairWritable>
{
    Text year=new Text();
    Text day=new Text();
    public TextpairWritable()
    {
        this.year=new Text();
        this.day=new Text();
    }
    public TextpairWritable(Text year,Text day)
    {
        this.year=year;
        this.day=day;
    }

    public TextpairWritable(String year,String day)
    {
        this.year=new Text(year);
        this.day=new Text(day);
    }
    public TextpairWritable(TextpairWritable o)
    {
        this.year=o.year;
        this.day=o.day;
    }
    public void set(Text year,Text day)
    {
        this.year=year;
        this.day=day;
    }
    public Text getyear()
    {
        return this.year;
    }
    public Text getday()
    {
        return this.day;
    }
    @Override
    public void readFields(DataInput in) throws IOException {
        year.readFields(in);
        day.readFields(in);
    }

    @Override
    public void write(DataOutput out) throws IOException {
        year.write(out);
        day.write(out);
    }

    public String toString()
    {
        return year+" "+day;
    }

    public int compareTo(TextpairWritable o)
    {
        int cmp=year.compareTo(day);
        if(cmp==0)
        {
            cmp=day.compareTo(day);
        }
        return cmp;
    }
}

GroupComparator:


package accidentexercise;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class ClassGroupComparator extends WritableComparator
{
    protected ClassGroupComparator()
    {
        super(TextpairWritable.class,true);
    }
    @SuppressWarnings("rawtypes")
    public int compare(WritableComparable w,WritableComparable w1)
    {
        TextpairWritable s=(TextpairWritable)w;
        TextpairWritable s1=(TextpairWritable)w1;
        int cmp= s.year.compareTo(s1.year);

            if(cmp==0)
            {
                cmp= -1*s.day.compareTo(s1.day);
            }
            return cmp;
    }
}

SortComparator:
package accidentexercise;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class ClassSortComparator extends WritableComparator
{
    protected ClassSortComparator()
    {
        super(TextpairWritable.class,true);
    }
    @SuppressWarnings("rawtypes")
    public int compare(WritableComparable w,WritableComparable w1)
    {
        TextpairWritable s=(TextpairWritable)w;
        TextpairWritable s1=(TextpairWritable)w1;
        int cmp=s.year.compareTo(s1.year);
        if(cmp==0)
        {
            cmp= -1*s.day.compareTo(s1.day);
        }
        return cmp;
    }

}
Mapper:
package accidentexercise;

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class ClassMapper extends Mapper<LongWritable,Text,TextpairWritable,IntWritable>
{
    public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException
    {

        Logger log=LoggerFactory.getLogger(ClassMapper.class) ;
        String s=value.toString();
        String[] orig_data=s.split(",");

        SimpleDateFormat df=new SimpleDateFormat("dd/MM/yyyy");
        df.setLenient(false);
        try
        {
            @SuppressWarnings("unused")
            Date date=df.parse(orig_data[0]);
            String myyear=orig_data[0].substring(6, 10);
            context.write(new TextpairWritable(new Text(myyear),new Text(orig_data[2])),new IntWritable(Integer.parseInt(orig_data[1])));
        }
        catch(ParseException e)
        {

            log.info("Date is not correct"+e);
        }
    }
}
Reducer:
package accidentexercise;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;

public class ClassReducer extends Reducer<TextpairWritable,IntWritable,TextpairWritable,IntWritable>
{
    public void reduce(TextpairWritable key,Iterable<IntWritable> value,Context context) throws IOException,InterruptedException
    {
        int count=0;
        for(IntWritable it:value)
        {
            count+=it.get();
        }
        context.write(key,new IntWritable(count));
    }

}
Driver:
package accidentexercise;


import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


public class ClassDriver {
    public static void main(String args[]) throws Exception
    {
        if(args.length!=2)
            {
            System.err.println("Usage: Worddrivernewapi <input path> <output path>");
            System.exit(-1);
            }
        Job job=new Job();

        job.setJarByClass(ClassDriver.class);
        job.setJobName("MyDriver");

        FileInputFormat.addInputPath(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        job.setMapperClass(ClassMapper.class);
        job.setPartitionerClass(ClassPartitioner.class);
        job.setSortComparatorClass(ClassSortComparator.class);
        job.setGroupingComparatorClass(ClassGroupComparator.class);
        job.setReducerClass(ClassReducer.class);
        //job.setNumReduceTasks(0);

        job.setOutputKeyClass(TextpairWritable.class);
        job.setOutputValueClass(IntWritable.class);

        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

}
Partitioner:
package accidentexercise;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.mapreduce.Partitioner;

public class ClassPartitioner extends Partitioner<TextpairWritable,IntWritable>
{

    @Override
    public int getPartition(TextpairWritable tp, IntWritable value, int numPartitions) {

        return Math.abs(Integer.parseInt(tp.getyear().toString()) * 127) % numPartitions;   
    }


}

样本输入:

日期,事故次数,天

01/03/2014,18,2

02/03/2014,19,3

03/03/2014,20,4

01/03/2014,1,2

02/03/2014,2,3

03/03/2014,4,4

01/03/2014,8,2

02/03/2014,9,3

03/03/2014,2,4

输出:

01/03/2014,2,27

02/03/2014,3,30

03/03/2014,4,26

于 2015-09-10T18:01:20.520 回答