更新 事实证明,这与 Databricks Spark CSV 阅读器创建 DataFrame 的方式有关。在下面这个不起作用的示例中,我使用 Databricks CSV 阅读器读取人员和地址 CSV,然后将生成的 DataFrame 以 Parquet 格式写入 HDFS。
我更改了代码以创建 DataFrame:(与 people.csv 类似)
JavaRDD<Address> address = context.textFile("/Users/sfelsheim/data/address.csv").map(
new Function<String, Address>() {
public Address call(String line) throws Exception {
String[] parts = line.split(",");
Address addr = new Address();
addr.setAddrId(parts[0]);
addr.setCity(parts[1]);
addr.setState(parts[2]);
addr.setZip(parts[3]);
return addr;
}
});
然后将生成的 DataFrame 以 Parquet 格式写入 HDFS,连接按预期工作
在这两种情况下,我都在阅读完全相同的 CSV。
尝试对从 HDFS 上的两个不同 parquet 文件创建的两个 DataFrame 执行简单连接时遇到问题。
[main] INFO org.apache.spark.SparkContext -运行 Spark 版本 1.4.1
从Hadoop 2.7.0使用 HDFS
这是一个示例来说明。
public void testStrangeness(String[] args) {
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("joinIssue");
JavaSparkContext context = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(context);
DataFrame people = sqlContext.parquetFile("hdfs://localhost:9000//datalake/sample/people.parquet");
DataFrame address = sqlContext.parquetFile("hdfs://localhost:9000//datalake/sample/address.parquet");
people.printSchema();
address.printSchema();
// yeah, works
DataFrame cartJoin = address.join(people);
cartJoin.printSchema();
// boo, fails
DataFrame joined = address.join(people,
address.col("addrid").equalTo(people.col("addressid")));
joined.printSchema();
}
人的内容
first,last,addressid
your,mom,1
fred,flintstone,2
地址内容
addrid,city,state,zip
1,sometown,wi,4444
2,bedrock,il,1111
people.printSchema();
结果是...
root
|-- first: string (nullable = true)
|-- last: string (nullable = true)
|-- addressid: integer (nullable = true)
address.printSchema();
结果是...
root
|-- addrid: integer (nullable = true)
|-- city: string (nullable = true)
|-- state: string (nullable = true)
|-- zip: integer (nullable = true)
DataFrame cartJoin = address.join(people);
cartJoin.printSchema();
笛卡尔连接工作正常, printSchema() 结果...
root
|-- addrid: integer (nullable = true)
|-- city: string (nullable = true)
|-- state: string (nullable = true)
|-- zip: integer (nullable = true)
|-- first: string (nullable = true)
|-- last: string (nullable = true)
|-- addressid: integer (nullable = true)
这个加盟...
DataFrame joined = address.join(people,
address.col("addrid").equalTo(people.col("addressid")));
导致以下异常。
Exception in thread "main" org.apache.spark.sql.AnalysisException: **Cannot resolve column name "addrid" among (addrid, city, state, zip);**
at org.apache.spark.sql.DataFrame$$anonfun$resolve$1.apply(DataFrame.scala:159)
at org.apache.spark.sql.DataFrame$$anonfun$resolve$1.apply(DataFrame.scala:159)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.DataFrame.resolve(DataFrame.scala:158)
at org.apache.spark.sql.DataFrame.col(DataFrame.scala:558)
at dw.dataflow.DataflowParser.testStrangeness(DataflowParser.java:36)
at dw.dataflow.DataflowParser.main(DataflowParser.java:119)
我尝试更改它,以便人员和地址具有共同的关键属性(addressid)并使用..
address.join(people, "addressid");
但是得到了同样的结果。
有任何想法吗??
谢谢