给出一个具有BIO 块标签的输入句子:
[('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ( 'of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('? ', 'O')]
我需要提取相关的短语,例如,如果我想提取'NP'
,我需要提取包含B-NP
and的元组片段I-NP
。
[出去]:
[('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
(注意:提取元组中的数字代表令牌索引。)
我尝试使用以下代码提取它:
def extract_chunks(tagged_sent, chunk_type):
current_chunk = []
current_chunk_position = []
for idx, word_pos in enumerate(tagged_sent):
word, pos = word_pos
if '-'+chunk_type in pos: # Append the word to the current_chunk.
current_chunk.append((word))
current_chunk_position.append((idx))
else:
if current_chunk: # Flush the full chunk when out of an NP.
_chunk_str = ' '.join(current_chunk)
_chunk_pos_str = '-'.join(map(str, current_chunk_position))
yield _chunk_str, _chunk_pos_str
current_chunk = []
current_chunk_position = []
if current_chunk: # Flush the last chunk.
yield ' '.join(current_chunk), '-'.join(current_chunk_position)
tagged_sent = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
但是当我有相同类型的相邻块时:
tagged_sent = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'), ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
它输出这个:
[('The Mitsubishi Electric Company Managing Director', '0-1-2-3-4-5'), ('ramen', '7')]
而不是所需的:
[('The Mitsubishi Electric Company', '0-1-2-3'), ('Managing Director', '4-5'), ('ramen', '7')]
如何从上面的代码中解决这个问题?
除了从上面的代码中如何完成之外,是否有更好的解决方案来提取特定的所需块chunk_type
?