4

因此,我根据礼品包装算法的示例编写了以下代码,用于查找一组点的凸包:

std::vector<sf::Vector2f> convexHull(const std::vector<sf::Vector2f>& _shape)
{
    std::vector<sf::Vector2f> returnValue;    
    returnValue.push_back(leftmostPoint(_shape));
    for (std::vector<sf::Vector2f>::const_iterator it = _shape.begin(), end = _shape.end(); it != end; ++it)
    {
        if (elementIncludedInVector(*it, returnValue)) continue;
        bool allPointWereToTheLeft = true;
        for (std::vector<sf::Vector2f>::const_iterator it1 = _shape.begin(); it1 != end; ++it1)
        {
            if (*it1 == *it || elementIncludedInVector(*it1, returnValue)) continue;
            if (pointPositionRelativeToLine(returnValue.back(), *it, *it1) > 0.0f)
            {
                allPointWereToTheLeft = false;
                break;
            }
        }
        if (allPointWereToTheLeft)
        {
            returnValue.push_back(*it);
            it = _shape.begin();
        }
    }
    return returnValue;
}

这是我确定第三点位于直线哪一侧的函数:

float pointPositionRelativeToLine(const sf::Vector2f& A, const sf::Vector2f& B, const sf::Vector2f& C)
{
    return (B.x - A.x)*(C.y - A.y) - (B.y - A.y)*(C.x - A.x);
}

返回负数表示点在一侧,正数在另一侧,0 表示三个点共线。现在,问题是:如何修改上述代码,使其即使在 _shape 中存在共线点时也能正常工作?

4

3 回答 3

7

如果某些点是共线的,则必须选择离它们最远的点(到当前点的最大距离)

于 2015-08-31T18:26:02.303 回答
1

您可以根据两点之间的“排除”关系(围绕共同中心)进行推理,如果 A 和 B 的相对位置证明 B 不能在凸包上,则 A 排除 B。

在图中,绿色点不包括蓝色点,而红色点不包括。在两个对齐的点中,离中心最远的点不包括另一个。排除轨迹是开放的半平面和半线。

在此处输入图像描述

请注意,“排除”是可传递的,并定义了总排序。

于 2015-09-02T08:33:29.357 回答
0

正确执行此操作比您演示的代码要复杂一些。我只会关注你的谓词的稳定性,而不是你如何处理共线点。谓词是您进行几何计算的地方 - pointPositionRelativeToLine.

您的代码设计得很好,因为您只在谓词中进行几何计算。这是使它健壮的必要条件。唉,你的谓词不应该返回一个浮点数,而是一个小集合的结果:要么LEFTRIGHT要么COLLINEAR

enum RelPos { LEFT, RIGHT, COLLINEAR };

RelPos pointPositionRelativeToLine(const sf::Vector2f& A, const sf::Vector2f& B, const sf::Vector2f& C)
{
    auto result = (B.x - A.x)*(C.y - A.y) - (B.y - A.y)*(C.x - A.x);
    if (result < 0.0) return LEFT;
    else if (result > 0.0) return RIGHT;
    return COLLINEAR;
}

然后,您可以弄清楚如何保证给定任何三个点,它们的任何排列都会返回正确的答案。这是必要的,否则,您的算法不能保证有效。

有两种通用方法:

  1. 使用适当的数据类型,以确保在谓词中使用时结果准确。

  2. 接受您使用的不精确数据类型,有一些输入无法计算结果。具体来说,您可以让谓词提供第四个值 ,INDETERMINATE并在这种情况下返回它。

第二种方法很容易通过为所有输入排列调用原始谓词来实现:

enum RelPos { LEFT, RIGHT, COLLINEAR, INDETERMINATE };
typedef sf::Vector2f Point_2;

RelPos ppImpl(const Point_2 & A, const Point_2 & B, const Point_2 & C)
{
    auto result = (B.x - A.x)*(C.y - A.y) - (B.y - A.y)*(C.x - A.x);
    if (result < 0.0) return LEFT;
    else if (result > 0.0) return RIGHT;
    return COLLINEAR;
}

bool inverse(RelPos a, RelPos b) {
  return a == LEFT && b == RIGHT || a == RIGHT && b == LEFT;
}

bool equal(RelPos a, RelPos b, RelPos c, RelPos d, RelPos e, RelPos f) {
  return a==b && b==c && c==d && d==e && e==f;
}

RelPos pointPositionRelativeToLine(const Point_2 & A, const Point_2 & B, const Point_2 & C) {
  auto abc = ppImpl(A, B, C);
  auto bac = ppImpl(B, A, C);
  auto acb = ppImpl(A, C, B);
  auto cab = ppImpl(C, A, B);
  auto bca = ppImpl(B, C, A);
  auto cba = ppImpl(C, B, A);
  if (abc == COLLINEAR) return equal(abc, bac, acb, cab, bca, cba) ?
    COLLINEAR : INDETERMINATE;
  if (!inverse(abc, bac) || !inverse(acb, cab) || !inverse(bca, cba))
    return INDETERMINATE;
  if (abc != bca || abc != cab)
    return INDETERMINATE;
  return abc;
}

上面的逻辑可能有错误,希望我做对了。但这是这里的一般方法。至少必须通过对给定数据集的上述测试,算法才能在数据集上工作。但我不记得如果这是一个充分条件。

当然,当INDETERMINATE从谓词获得结果时,算法必须终止:

const auto errVal = std::vector<sf::Vector2f>();
...
auto rel = pointPositionRelativeToLine(returnValue.back(), *it, *it1);
if (rel == INDETERMINATE) return errVal;
if (rel == RIGHT) {
  allPointWereToTheLeft = false;
  break;
}
于 2015-08-31T19:04:54.390 回答