我在 nolearn 中做一个神经网络,这是一个使用千层面的基于 Theano 的库。
我不明白如何定义自己的成本函数。
输出层只有 3 个神经元[0, 1, 2]
,我希望它能够确定它何时给出 1 或 2,否则——如果它不确定 1、2——则只返回 0。
所以,我想出了一个成本函数(需要调整),其中 1 和 2 的成本是 0 的两倍,但我不明白如何告诉网络。
# optimization method:
from lasagne.updates import sgd
update=sgd,
update_learning_rate=0.0001
这是更新的代码,但我如何告诉 SGD 使用我的成本函数而不是它自己的?
编辑: 完整的网络代码是:
def nn_loss(data, x_period, columns, num_epochs, batchsize, l_rate=0.02):
net1 = NeuralNet(
layers=[('input', layers.InputLayer),
('hidden1', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
batch_iterator_train=BatchIterator(batchsize),
batch_iterator_test=BatchIterator(batchsize),
input_shape=(None, int(x_period*columns)),
hidden1_nonlinearity=lasagne.nonlinearities.rectify,
hidden1_num_units=100, # number of units in 'hidden' layer
output_nonlinearity=lasagne.nonlinearities.sigmoid,
output_num_units=3,
# optimization method:
update=nesterov_momentum,
update_learning_rate=5*10**(-3),
update_momentum=0.9,
on_epoch_finished=[
EarlyStopping(patience=20),
],
max_epochs=num_epochs,
verbose=1,
# Here are the important parameters for multi labels
regression=True,
# objective_loss_function=multilabel_objective,
# custom_score=("validation score", lambda x, y: np.mean(np.abs(x - y)))
)
# Train the network
start_time = time.time()
net1.fit(data['X_train'], data['y_train'])
}
使用时编辑
错误regression=True
Got 99960 testing datasets.
# Neural Network with 18403 learnable parameters
## Layer information
# name size
--- ------- ------
0 input 180
1 hidden1 100
2 output 3
Traceback (most recent call last):
File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/compile/function_module.py", line 607, in __call__
outputs = self.fn()
ValueError: GpuElemwise. Input dimension mis-match. Input 1 (indices start at 0) has shape[1] == 1, but the output's size on that axis is 3.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train_nolearn_simple.py", line 272, in <module>
main(**kwargs)
File "train_nolearn_simple.py", line 239, in main
nn_loss_fit = nn_loss(data, x_period, columns, num_epochs, batchsize)
File "train_nolearn_simple.py", line 217, in nn_loss
net1.fit(data['X_train'], data['y_train'])
File "/Users/morgado/anaconda/lib/python3.4/site-packages/nolearn/lasagne/base.py", line 416, in fit
self.train_loop(X, y)
File "/Users/morgado/anaconda/lib/python3.4/site-packages/nolearn/lasagne/base.py", line 462, in train_loop
self.train_iter_, Xb, yb)
File "/Users/morgado/anaconda/lib/python3.4/site-packages/nolearn/lasagne/base.py", line 516, in apply_batch_func
return func(Xb) if yb is None else func(Xb, yb)
File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/compile/function_module.py", line 618, in __call__
storage_map=self.fn.storage_map)
File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/gof/link.py", line 297, in raise_with_op
reraise(exc_type, exc_value, exc_trace)
File "/Users/morgado/anaconda/lib/python3.4/site-packages/six.py", line 658, in reraise
raise value.with_traceback(tb)
File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/compile/function_module.py", line 607, in __call__
outputs = self.fn()
ValueError: GpuElemwise. Input dimension mis-match. Input 1 (indices start at 0) has shape[1] == 1, but the output's size on that axis is 3.
Apply node that caused the error: GpuElemwise{Sub}[(0, 1)](GpuElemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0, GpuFromHost.0)
Toposort index: 22
Inputs types: [CudaNdarrayType(float32, matrix), CudaNdarrayType(float32, matrix)]
Inputs shapes: [(200, 3), (200, 1)]
Inputs strides: [(3, 1), (1, 0)]
Inputs values: ['not shown', 'not shown']
Outputs clients: [[GpuCAReduce{pre=sqr,red=add}{1,1}(GpuElemwise{Sub}[(0, 1)].0), GpuElemwise{Mul}[(0, 0)](GpuElemwise{Sub}[(0, 1)].0, GpuElemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0, GpuElemwise{sub,no_inplace}.0), GpuElemwise{mul,no_inplace}(CudaNdarrayConstant{[[ 2.]]}, GpuElemwise{Composite{(inv(i0) / i1)},no_inplace}.0, GpuElemwise{Sub}[(0, 1)].0, GpuElemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0, GpuElemwise{sub,no_inplace}.0)]]
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.