2

我正在尝试将 CUSP 集成到现有的 Fortran 代码中。现在我只是想获得推力/尖顶的基本设置,以从 Fortran 输入数组并使用它们来构造尖顶矩阵(现在是 coo 格式)。由于这个线程,我已经能够获得像 C 例程这样的包装器来编译到库中并将其与 Fortran 代码链接: unresolved-references-using-ifort-with-nvcc-and-cusp

由于前一个线程的帮助,我可以验证 Fortran 是否正确输入数组指针:Generating CUSP coo_matrix from passed FORTRAN arrays

不幸的是,我仍然无法让 CUSP 使用这些来生成和打印矩阵。代码和输出如下所示:

输出

$ ./fort_cusp_test
 testing 1 2 3
n: 3, nnz: 9
     i,  row_i,  col_j,        val_v
     0,      1,      1,   1.0000e+00
     1,      1,      2,   2.0000e+00
     2,      1,      3,   3.0000e+00
     3,      2,      1,   4.0000e+00
     4,      2,      2,   5.0000e+00
     5,      2,      3,   6.0000e+00
     6,      3,      1,   7.0000e+00
     7,      3,      2,   8.0000e+00
     8,      3,      3,   9.0000e+00
initialized row_i into thrust
initialized col_j into thrust
initialized val_v into thrust
defined CUSP integer array view for row_i and col_j
defined CUSP float array view for val_v
loaded row_i into a CUSP integer array view
loaded col_j into a CUSP integer array view
loaded val_v into a CUSP float array view
defined CUSP coo_matrix view
Built matrix A from CUSP device views
sparse matrix <3, 3> with 9 entries
libc++abi.dylib: terminating with uncaught exception of type thrust::system::system_error: invalid argument

Program received signal SIGABRT: Process abort signal.

Backtrace for this error:
#0  0x10d0fdff6
#1  0x10d0fd593
#2  0x7fff8593ff19
Abort trap: 6

fort_cusp_test.f90

program fort_cuda_test

   implicit none

 ! interface
 !    subroutine test_coo_mat_print_(row_i,col_j,val_v,n,nnz) bind(C)
 !       use, intrinsic :: ISO_C_BINDING, ONLY: C_INT,C_FLOAT
 !       implicit none
 !       integer(C_INT),value :: n, nnz
 !       integer(C_INT) :: row_i(:), col_j(:)
 !       real(C_FLOAT) :: val_v(:)
 !    end subroutine test_coo_mat_print_
 ! end interface

   integer*4   n
   integer*4   nnz

   integer*4, target :: rowI(9),colJ(9)
   real*4, target :: valV(9)

   integer*4, pointer ::   row_i(:)
   integer*4, pointer ::   col_j(:)
   real*4, pointer ::   val_v(:)

   n     =  3
   nnz   =  9
   rowI =  (/ 1, 1, 1, 2, 2, 2, 3, 3, 3/)
   colJ =  (/ 1, 2, 3, 1, 2, 3, 1, 2, 3/)
   valV =  (/ 1, 2, 3, 4, 5, 6, 7, 8, 9/)

   row_i => rowI
   col_j => colJ
   val_v => valV

   write(*,*) "testing 1 2 3"

   call test_coo_mat_print (rowI,colJ,valV,n,nnz)

end program fort_cuda_test

cusp_runner.cu

#include <stdio.h>
#include <cusp/coo_matrix.h>
#include <iostream>
// #include <cusp/krylov/cg.h>
#include <cusp/print.h>

#if defined(__cplusplus)
extern "C" {
#endif

void test_coo_mat_print_(int * row_i, int * col_j, float * val_v, int * N, int * NNZ ) {

   int n, nnz;

   n = *N;
   nnz = *NNZ;

   printf("n: %d, nnz: %d\n",n,nnz);

   printf("%6s, %6s, %6s, %12s \n","i","row_i","col_j","val_v");
   for(int i=0;i<n;i++) {
      printf("%6d, %6d, %6d, %12.4e\n",i,row_i[i],col_j[i],val_v[i]);
   }
   //if ( false ) {
   //wrap raw input pointers with thrust::device_ptr
   thrust::device_ptr<int> wrapped_device_I(row_i);
   printf("initialized row_i into thrust\n");
   thrust::device_ptr<int> wrapped_device_J(col_j);
   printf("initialized col_j into thrust\n");
   thrust::device_ptr<float> wrapped_device_V(val_v);
   printf("initialized val_v into thrust\n");

   //use array1d_view to wrap individual arrays
   typedef typename cusp::array1d_view< thrust::device_ptr<int> > DeviceIndexArrayView;
   printf("defined CUSP integer array view for row_i and col_j\n");
   typedef typename cusp::array1d_view< thrust::device_ptr<float> > DeviceValueArrayView;
   printf("defined CUSP float array view for val_v\n");

   DeviceIndexArrayView row_indices(wrapped_device_I, wrapped_device_I + nnz);
   printf("loaded row_i into a CUSP integer array view\n");
   DeviceIndexArrayView column_indices(wrapped_device_J, wrapped_device_J + nnz);
   printf("loaded col_j into a CUSP integer array view\n");
   DeviceValueArrayView values(wrapped_device_V, wrapped_device_V + nnz);
   printf("loaded val_v into a CUSP float array view\n");

   //combine array1d_views into coo_matrix_view
   typedef cusp::coo_matrix_view<DeviceIndexArrayView,DeviceIndexArrayView,DeviceValueArrayView> DeviceView;
   printf("defined CUSP coo_matrix view\n");

   //construct coo_matrix_view from array1d_views
   DeviceView A(n,n,nnz,row_indices,column_indices,values);
   printf("Built matrix A from CUSP device views\n");

   cusp::print(A);
   printf("Printed matrix A\n");
 //}
}
#if defined(__cplusplus)
}
#endif

生成文件

Test:
   nvcc -Xcompiler="-fPIC" -shared cusp_runner.cu -o cusp_runner.so -I/Developer/NVIDIA/CUDA-6.5/include/cusp
   gfortran -c fort_cusp_test.f90
   gfortran fort_cusp_test.o cusp_runner.so -L/Developer/NVIDIA/CUDA-6.5/lib -lcudart -o fort_cusp_test

clean:
   rm *.o *.so fort_cusp_test

cusp_runner.cu的功能版本:

#include <stdio.h>
#include <cusp/coo_matrix.h>
#include <iostream>
// #include <cusp/krylov/cg.h>
#include <cusp/print.h>

#if defined(__cplusplus)
extern "C" {
#endif

void test_coo_mat_print_(int * row_i, int * col_j, float * val_v, int * N, int * NNZ ) {

   int n, nnz;

   n = *N;
   nnz = *NNZ;

   printf("n: %d, nnz: %d\n",n,nnz);

   printf("printing input (row_i, col_j, val_v)\n");
   printf("%6s, %6s, %6s, %12s \n","i","row_i","col_j","val_v");
   for(int i=0;i<nnz;i++) {
      printf("%6d, %6d, %6d, %12.4e\n",i,row_i[i],col_j[i],val_v[i]);
   }

   printf("initializing thrust device vectors\n");
   thrust::device_vector<int> device_I(row_i,row_i+nnz);
   printf("device_I initialized\n");
   thrust::device_vector<int> device_J(col_j,col_j+nnz);
   printf("device_J initialized\n");
   thrust::device_vector<float> device_V(val_v,val_v+nnz);
   printf("device_V initialized\n");

   cusp::coo_matrix<int, float, cusp::device_memory> A(n,n,nnz);
   printf("initialized empty CUSP coo_matrix on device\n");

   A.row_indices = device_I;
   printf("loaded device_I into A.row_indices\n");
   A.column_indices = device_J;
   printf("loaded device_J into A.column_indices\n");
   A.values = device_V;
   printf("loaded device_V into A.values\n");

   cusp::print(A);
   printf("Printed matrix A\n");
 //}
}
#if defined(__cplusplus)
}
#endif
4

1 回答 1

3

您用于处理指针的推力/尖顶侧代码完全不正确。这个:

thrust::device_ptr<int> wrapped_device_I(row_i);

不做你认为它做的事。您实际上所做的是将主机地址转换为设备地址。除非您使用 CUDA 托管内存,否则这是非法的,而且我在这段代码中看不到任何证据。您要做的是在开始之前分配内存并将 Fortran 数组复制到 GPU。执行以下操作:

thrust::device_ptr<int> wrapped_device_I = thrust::device_malloc<int>(nnz);
thrust::copy(row_i, row_i + nnz, wrapped_device_I);

[免责声明:完全未经测试,使用风险自负]

对于每个 COO 向量。但是,我建议将 GPU 设置部分中的大部分代码替换为test_coo_mat_print_实例thrust::vector。除了更容易使用之外,当它们超出范围时,您可以获得免费的内存释放,从而减少工程内存泄漏的可能性。所以像:

thrust::device_vector<int> device_I(row_i, row_i + nnz);

在一个电话中处理所有事情。

作为最后一个提示,如果您正在开发多语言代码库,请将它们设计为使每种语言的代码完全独立并拥有自己的本机测试代码。如果您在这种情况下这样做了,您会发现 C++ 部分无法独立于您遇到的任何 Fortran 问题而工作。它会使调试变得更加简单。

于 2015-08-18T05:40:44.263 回答