我正在应用卷积技术来卷积 2 个数据集,一个 nside = 256 的 healpix 图和一个形状的主光束 (256, 256),以便测量卷积后的 healpix 图的总强度。我的问题是,在将我的地图与主光束卷积后,我在卷积后的地图中得到了环。我尝试使用 lanczos 或 Gaussian 内核对其进行归一化以处理环,但所有这些方法都失败了。
在下面的代码中,我使用 scipy 中的查询函数在给定半径内的 healpix 地图中搜索最近的像素,并使用地图坐标获取主光束中相应像素的乘积之和。我得到的最终图像中有环。请问谁能帮我解决这个问题?提前致谢。
def query_npix(nside, npix, radius):
print 'searching for nearest pixels:......'
t1, t2 = hp.pix2ang(nside, np.arange(npix))
tree = spatial.cKDTree(zip(t1, t2))
dist, ipix_indx = tree.query(zip(t1, t2), k = 150, distance_upper_bound = radius)
r1, r2 = hp.pix2ang(nside, ipix_indx)
ra = r1.T - t1
dec = r2.T - t2
print 'Done searching'
return np.array(dist), np.array(ipix_indx), np.array(ra.T), np.array(dec.T)
def fullSky_convolve(healpix_map, primary_beam_fits, ipix_indx, dist, radius, r1, r2):
measured_map = []
hdulist = openFitsFile(primary_beam_fits)
beam_data = hdulist[0].data
header = hdulist[0].header
nside = hp.get_nside(healpix_map[0, ...])
npix = hp.get_map_size(healpix_map[0, ...]) # total number of pixels in the map must be 12 * nside^2
crpix1, crval1, cdelt1 = [ header.get(x) for x in "CRPIX1", "CRVAL1", "CDELT1" ]
crpix2, crval2, cdelt2 = [ header.get(x) for x in "CRPIX2", "CRVAL2", "CDELT2" ]
# beam centres in pixel coordinates
xc = crpix1-1 + (np.rad2deg(r1.ravel()) - crval1)/(256*cdelt1)
yc = crpix2-1 + (np.rad2deg(r2.ravel()) - crval2)/(256*cdelt2)
#xc = (np.rad2deg(r1.ravel()) )/cdelt1
for j in xrange(4):
print 'started Stokes: %d' %j
for iter in xrange(0 + j, 16, 4):
outpt = np.zeros(shape = npix, dtype=np.float64)
#by = outpt.copy()
# mask beam
bm_data = beam_data[iter]
#masked_beam= beam_data[iter]
shape = bm_data.shape
rad = np.linspace(-shape[0]/2,shape[-1]/2,shape[0])
rad2d = np.sqrt(rad[np.newaxis,:]**2+rad[:,np.newaxis]**2)
mask = rad2d <= radius/abs(cdelt2)
masked_beam = bm_data*mask
s1 = ndimage.map_coordinates(masked_beam, [xc, yc], mode = 'constant')
bm_map = s1.reshape(dist.shape[0], dist.shape[-1])
for itr in xrange(npix):
g_xy = (1.0/(np.sqrt(2*np.pi)*np.std(dist[itr])))*np.exp(-(dist[itr])**2/(2*np.var(dist[itr])))
#weighted_healpix_map = np.convolve(healpix_map[j, ...][ipix_indx[itr]], g_xy/g_xy.sum(), mode='same')
weighted_healpix_map = ndimage.filters.convolve(healpix_map[j, ...][ipix_indx[itr]], g_xy/g_xy.sum(), mode='reflect')
#outpt[itr] = np.sum(weighted_healpix_map*(bm_map[itr]/bm_map[itr].sum()))
outpt[itr] = np.sum(weighted_healpix_map*(bm_map[itr]))
#print 'itr', itr
alpha = file('pap%d.save'%iter, 'wb')
#h_map = ndimage.filters.gaussian_filter(outpt, sigma = 3.)
cPickle.dump(outpt, alpha, protocol = cPickle.HIGHEST_PROTOCOL)
alpha.close()
print 'Just dumped stripp%d.save:-------'%iter
print 'Loading dumped files:-------'
loaded_objects = []
for itr4 in xrange(16):
alpha = file('stripp%d.save'%itr4, 'rb')
loaded_objects.append(cPickle.load(alpha))
alpha.close()
measured_map.append(copy.deepcopy(loaded_objects))
return measured_map