我正在寻找一种简单的方法来提取(和绘制)一个因子的指定水平组合的最小二乘均值,对于另一个因子的每个水平。
示例数据:
set.seed(1)
model.data <- data.frame(time = factor(paste0("day", rep(1:8, each = 16))),
animal = factor(rep(1:16, each = 8)),
tissue = factor(c("blood", "liver", "kidney", "brain")),
value = runif(128)
)
为因素“时间”设置自定义对比:
library("phia")
custom.contrasts <- as.data.frame(contrastCoefficients(
time ~ (day1+day2+day3)/3 - (day4+day5+day6)/3,
time ~ (day1+day2+day3)/3 - (day7+day8)/2,
time ~ (day4+day5+day6)/3 - (day7+day8)/2,
data = model.data, normalize = FALSE))
colnames(custom.contrasts) <- c("early - late",
"early - very late",
"late - very late")
custom.contrasts.lsmc <- function(...) return(custom.contrasts)
拟合模型并计算最小二乘意味着:
library("lme4")
tissue.model <- lmer(value ~ time * tissue + (1|animal), model.data)
library("lsmeans")
tissue.lsm <- lsmeans(tissue.model, custom.contrasts ~ time | tissue)
绘图:
plot(tissue.lsm$lsmeans)
dev.new()
plot(tissue.lsm$contrasts)
现在,第二个情节有我想要的组合,但它显示了组合手段之间的差异,而不是手段本身。
我可以自己从中获取个人值tissue.lsm$lsmeans
并计算组合平均值,但我有一种烦人的感觉,即有一种我看不到的更简单的方法。lsmobj
毕竟,所有数据都应该在.
early.mean.liver = mean(model.data$value[model.data$tissue == "liver" &
model.data$time %in% c("day1", "day2", "day3")])
late.mean.liver = mean(model.data$value[model.data$tissue == "liver" &
model.data$time %in% c("day4", "day5", "day6")])
vlate.mean.liver = mean(model.data$value[model.data$tissue == "liver" &
model.data$time %in% c("day7", "day8")])
# ... for each level of "tissue"
#compare to tissue.lsm$contrasts
early.mean.liver - late.mean.liver
early.mean.liver - vlate.mean.liver
late.mean.liver - vlate.mean.liver
我期待听到您的意见或建议。谢谢!