Is there a direct way to address the following error or overall a better way to use Hive to get the join that I need? Output to a stored table isn't a requirement as I can be content with an INSERT OVERWRITE LOCAL DIRECTORY
to a csv.
I am trying to perform the following cross join. ipint is a 9GB table, and geoiplite is 270MB.
CREATE TABLE iplatlong_sample AS
SELECT ipintegers.networkinteger, geoiplite.latitude, geoiplite.longitude
FROM geoiplite
CROSS JOIN ipintegers
WHERE ipintegers.networkinteger >= geoiplite.network_start_integer AND ipintegers.networkinteger <= geoiplite.network_last_integer;
I use CROSS JOIN on ipintegers instead of geoiplite because I have read that the rule is for the smaller table to be on the left, larger on the right.
Map and Reduce stages complete to 100% according to HIVE, but then
2015-08-01 04:45:36,947 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 8767.09 sec
MapReduce Total cumulative CPU time: 0 days 2 hours 26 minutes 7 seconds 90 msec
Ended Job = job_201508010407_0001
Stage-8 is selected by condition resolver.
Execution log at: /tmp/myuser/.log
2015-08-01 04:45:38 Starting to launch local task to process map join; maximum memory = 12221153280
Execution failed with exit status: 3
Obtaining error information
Task failed!
Task ID: Stage-8
Logs:
/tmp/myuser/hive.log
FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.mr.MapredLocalTask
MapReduce Jobs Launched: Job 0: Map: 38 Reduce: 1 Cumulative CPU: 8767.09 sec
HDFS Read: 9438495086 HDFS Write: 8575548486 SUCCESS
My hive config:
SET hive.mapred.local.mem=40960;
SET hive.exec.parallel=true;
SET hive.exec.compress.output=true;
SET hive.exec.compress.intermediate = true;
SET hive.optimize.skewjoin = true;
SET mapred.compress.map.output=true;
SET hive.stats.autogather=false;
I have varied SET hive.auto.convert.join
between true and false but with the same result.
Here are the errors in the output log from /tmp/myuser/hive.log
$ tail -12 -f tmp/mysyer/hive.log
2015-08-01 07:30:46,086 ERROR exec.Task (SessionState.java:printError(419)) - Execution failed with exit status: 3
2015-08-01 07:30:46,086 ERROR exec.Task (SessionState.java:printError(419)) - Obtaining error information
2015-08-01 07:30:46,087 ERROR exec.Task (SessionState.java:printError(419)) -
Task failed!
Task ID:
Stage-8
Logs:
2015-08-01 07:30:46,087 ERROR exec.Task (SessionState.java:printError(419)) - /tmp/myuser/hive.log
2015-08-01 07:30:46,087 ERROR mr.MapredLocalTask (MapredLocalTask.java:execute(268)) - Execution failed with exit status: 3
2015-08-01 07:30:46,094 ERROR ql.Driver (SessionState.java:printError(419)) - FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.mr.MapredLocalTask
I am running the hive client on the Master, a Google Cloud Platform instance of type n1-highmem-8 type (8 CPU, 52GB) and workers are n1-highmem-4 (4CPU 26GB), but I suspect after MAP and REDUCE that a local join (as implied) takes place on the Master. Regardless, in bdutils I configured the JAVAOPTS for the worker nodes (n1-highmem-4
) to: n1-highmem-4
SOLUTION EDIT: The solution is to organize the data the range data into a range tree.