使用Caffe创建用于训练的数据集我都尝试使用 HDF5 和 LMDB。但是,创建 LMDB 非常慢,甚至比 HDF5 还要慢。我正在尝试编写约 20,000 张图像。
我做错了什么吗?有什么我不知道的吗?
这是我创建 LMDB 的代码:
DB_KEY_FORMAT = "{:0>10d}"
db = lmdb.open(path, map_size=int(1e12))
curr_idx = 0
commit_size = 1000
for curr_commit_idx in range(0, num_data, commit_size):
with in_db_data.begin(write=True) as in_txn:
for i in range(curr_commit_idx, min(curr_commit_idx + commit_size, num_data)):
d, l = data[i], labels[i]
im_dat = caffe.io.array_to_datum(d.astype(float), label=int(l))
key = DB_KEY_FORMAT.format(curr_idx)
in_txn.put(key, im_dat.SerializeToString())
curr_idx += 1
db.close()
如您所见,我为每 1,000 个图像创建一个事务,因为我认为为每个图像创建一个事务会产生开销,但这似乎不会对性能产生太大影响。