1

我正在从使用 OpenSSL::Cipher 使用 AES-256-CBC 加密数据的服务器发送一些信息。我在一个用 Delphi XE8 编码的应用程序中接收数据,并尝试使用 TPLB 3 OpenSSL 解密数据。从我尝试过的所有内容中,我得到了所有匹配的信息、密钥、iv 等),但在尝试解密时仍然会收到错误或垃圾数据。我假设 TPLB 3 setup/config 缺少一些东西来让它正确解密,但我一辈子都无法弄清楚。任何帮助深表感谢。

德尔福解密

function TLicenseReload.Decode(L, K, I: string): string;
var
  cdec: TOpenSSL_Codec;
  s: string;
  sOut,
  sIn: TStream;
begin
  Result := '';
  cdec := TOpenSSL_Codec.Create(nil);
  sIn := TStringStream.Create;
  sout := TStringStream.Create;
  try
    sIn.Write(L, length(L));
    sIn.Position := 0;

    cdec.SetKey(TEncoding.Default.GetBytes(K));
    cdec.SetIV(TEncoding.Default.GetBytes(I));
    cdec.Cipher := cipher_aes_256_cbc;
    cdec.PaddingScheme := {padNone;//}padPKCS;
    //cdec.LibName := 'libeay32.dll'; //toggled on and off to attempt to decrypt correctly
    //cdec.LibPath := ExtractFilePath(Application.Exename); //toggled on and off to attempt to decrypt correctly
    //cdec.RequiredVersion := '1.0.1.7'; //toggled on and off to attempt to decrypt correctly
    cdec.isLoaded := true; //receive an access violation if this is not set
    cdec.Decrypt(sOut, sIn);
    //s := sOut.DataString;   //was using TStringStream but wasn't working so switched to TStream
    sOut.ReadBuffer(s[1], sOut.Size - sOut.Position);
    result := s;
  finally
    sOut.Free;
    sIn.Free;
    cdec.Free;
  end;
end;

红宝石加密

begin
unless loc.nil?
  cip = OpenSSL::Cipher.new('AES-256-CBC')
  cip.encrypt
  cip.key = Digest::SHA1.hexdigest(loc.l_hash[0..31].upcase).upcase
  lic_iv = cip.random_iv
  lic_iv = Base64.encode64(lic_iv)
  enc_lic_date = cip.update(loc.licensed_through.to_s + ':' + loc.customer.purchased.to_s) + cip.final
  enc_lic_date = Base64.encode64(enc_lic_date)#.encode('utf-8')
  #enc_lic_date << cip.final
end
rescue StandardError => e
  error_message = e.to_s
  puts e.to_s
end

编辑:

我回去仔细检查了所有内容(基本上是重新开始)。我已经确认在服务器上加密的字节(在它们被 Base64 编码之前)与在客户端上被解密的字节(后 Base64 解码)相同。但是,我仍然在“垃圾”。

更新(混乱)德尔福解密

function TLicenseReload.DecodeLicense(L, K, I: string): string;
var
  cdec: TOpenSSL_Codec;
  s: string;
  sOut,
  sIn: TStringStream;
  x,
  y: TBytes;
  z: string;
begin
  Result := '';
  cdec := TOpenSSL_Codec.Create(nil);
  sIn := TStringStream.Create;
  sout := TStringStream.Create;
  try
    SetLength(x, Length(K));
    SetLength(y, Length(DecodeBase64(I)));
    //SetLength(z, Length(DecodeBase64(L)));
    x := TEncoding.UTF8.GetBytes(K);
    y := DecodeBase64(I);
    //z := string(DecodeBase64(L));

    //sIn.WriteString(z);//, length(z));
    sIn.WriteData(DecodeBase64(L), length(DecodeBase64(L)));
    sIn.Position := 0;

    //cdec.SetKey(TEncoding.UTF8.GetBytes(unbaseit(K)));
    //cdec.SetIV(TEncoding.UTF8.GetBytes(unbaseit(I)));
    cdec.SetKey(TEncoding.UTF8.GetBytes(K));
    cdec.SetIV(DecodeBase64(I));
    cdec.Cipher := cipher_aes_256_cbc;
    cdec.PaddingScheme := padNone;//}padPKCS;
    //cdec.LibName := 'libeay32.dll';
    //cdec.LibPath := ExtractFilePath(Application.Exename);
    //cdec.RequiredVersion := '1.0.1.7';
    cdec.isLoaded := true;
    cdec.Decrypt(sOut, sIn);
    s := sOut.DataString;
    //sOut.ReadBuffer(s[1], sOut.Size - sOut.Position);
    result := s;
  finally
    sOut.Free;
    sIn.Free;
    cdec.Free;
  end;
end;

EDIT 2 TPLB3 有两个填充选项,无或 PKCS。没有设置,我会被淘汰。设置 PKCS 后,我收到“OpenSSL 加密错误”。结果的编码似乎无关紧要,它仍然是垃圾。

4

1 回答 1

0

我能够将加密数据发送下来进行解密。我最终使用了这篇文章中的函数和单元。我不得不稍微修改它们,并更新了几个函数调用以满足我的需要,我将在下面发布。

我之前看过这个帖子,但无法让它工作,所以放弃并回到了TPLB3。在把我的头撞在墙上几个小时并在网上研究和挖掘之后,我与 TPLB3 如此接近,我只是无法获得预期的结果。因此,在一位同事的建议下,我再次查看并意识到,当我第一次尝试时,我确实从错误的编码字符串中传递了字节,这是我在寻求 TPLB3 工作的过程中发现并追踪的. 一旦我重新插入它,它需要进行一些调整和更新(更新以防旧功能被删除)以使其在我的特定情况下正常工作。

  SALT_MAGIC: AnsiString = 'Salted__';
  SALT_MAGIC_LEN: integer = 8;
  SALT_SIZE = 8;

function EVP_Decrypt_AES256(const Value: TBytes; APassword: TBytes; AIV: TBytes): TBytes;
var
  cipher: PEVP_CIPHER;
  ctx: EVP_CIPHER_CTX;
  salt, key, iv, buf: TBytes;
  src_start, buf_start, out_len, attempt: integer;
begin
  cipher := EVP_aes_256_cbc;
  SetLength(salt, SALT_SIZE);
  // First read the magic text and the salt - if any
  if (AnsiString(TEncoding.ASCII.GetString(Value, 0, SALT_MAGIC_LEN)) = SALT_MAGIC) then
  begin
    Move(Value[SALT_MAGIC_LEN], salt[0], SALT_SIZE);
    EVP_GetKeyIV(APassword, cipher, salt, key, iv);
    src_start := SALT_MAGIC_LEN + SALT_SIZE;
  end
  else
  begin
    //EVP_GetKeyIV(APassword, cipher, nil, key, iv); //commented out because we are passing in a known iv
    key := APassword;
    iv := AIV;
    src_start := 0;
  end;

  EVP_CIPHER_CTX_init(@ctx);
  try
    EVP_DecryptInit_ex(@ctx, cipher, nil, @key[0], @iv[0]);
    SetLength(buf, Length(Value));
    buf_start := 0;
    //EVP_DecryptUpdate(@ctx, @buf[buf_start], @out_len, @Value[src_start], Length(Value) - src_start);
    EVP_DecryptUpdate(@ctx, @buf[buf_start], out_len, @Value[src_start], Length(Value) - src_start);
    Inc(buf_start, out_len);
    //EVP_DecryptFinal(@ctx, @buf[buf_start], @out_len);
    EVP_DecryptFinal_ex(@ctx, @buf[buf_start], out_len);
    Inc(buf_start, out_len);
    if ((length(buf) > 0) and (buf_start > 0) and (buf[0] <> 0)) then
      SetLength(buf, buf_start);
    result := buf;
  finally
    repeat
    until EVP_CIPHER_CTX_cleanup(@ctx) = 1;
  end;
end;

function EVP_GetSalt: TBytes;
begin
  SetLength(result, PKCS5_SALT_LEN);
  RAND_pseudo_bytes(@result[0], PKCS5_SALT_LEN);
end;

procedure EVP_GetKeyIV(APassword: TBytes; ACipher: PEVP_CIPHER; const ASalt: TBytes; out Key, IV: TBytes);
var
  ctx: EVP_MD_CTX;
  hash: PEVP_MD;
  mdbuff: TBytes;
  mds: cardinal;
  nkey, niv: integer;
begin
  hash := EVP_sha256;
  mds := 0;
  SetLength(mdbuff, EVP_MAX_MD_SIZE);

  nkey := ACipher.key_len;
  niv := ACipher.iv_len;
  SetLength(Key, nkey);
  SetLength(IV, nkey);  // Max size to start then reduce it at the end

  Assert(hash.md_size >= nkey);
  Assert(hash.md_size >= niv);

  // This is pretty much the same way that EVP_BytesToKey works. But that
  // allows multiple passes through the hashing loop and also allows to
  // choose different hashing methods. We have no need for this. The
  // OpenSSL docs say it is out of date and internet sources suggest using
  // something like PKCS5_v2_PBE_keyivgen and/or PKCS5_PBKDF2_HMAC_SHA1
  // but this method is easy to port to the DEC and DCP routines and easy to
  // use in other environments. Ultimately the Key and IV rely on the password
  // and the salt and can be easily reformed.

  // This method relies on the fact that the hashing method produces a key of
  // the correct size. EVP_BytesToKey goes through muptiple hashing passes if
  // necessary to make the key big enough when using smaller hashes.

  EVP_MD_CTX_init(@ctx);
  try
    // Key first
    EVP_DigestInit_ex(@ctx, hash, nil);
    EVP_DigestUpdate(@ctx, @APassword[0], Length(APassword));
    if (ASalt <> nil) then
      EVP_DigestUpdate(@ctx, @ASalt[0], Length(ASalt));
    EVP_DigestFinal_ex(@ctx, @Key[0], mds);

    // Derive IV next
    EVP_DigestInit_ex(@ctx, hash, nil);
    EVP_DigestUpdate(@ctx, @Key[0], mds);
    EVP_DigestUpdate(@ctx, @APassword[0], Length(APassword));
    if (ASalt <> nil) then
      EVP_DigestUpdate(@ctx, @ASalt[0], Length(ASalt));
    EVP_DigestFinal_ex(@ctx, @IV[0], mds);

    SetLength(IV, niv);
  finally
    EVP_MD_CTX_cleanup(@ctx);
  end;
end;

unit libeay32;

{
  Provided by user shunty from StackOverflow
  https://stackoverflow.com/questions/9723963/delphi-pascal-example-for-calling-openssl-evp-functions

  Import unit for the OpenSSL libeay32.dll library.
  Originally based on the work by Marco Ferrante.
    http://www.csita.unige.it/
    http://www.disi.unige.it/
  then on the Indy libraries
  and, of course, the C source code from http://www.openssl.org

  Only the parts that we need to use have been translated/imported. There are
  a whole load of functions in the library that aren't included here

  2010-03-11 Why re-invent the wheel. Indy has done a large chunk of this
  already so use it - IdSSLOpenSSLHeaders
  Now we generally just include stuff that isn't available in the Indy code.
  Primarily encryption stuff rather than SSL stuff.
}

interface

uses
  SysUtils, Windows,
  IdSSLOpenSSLHeaders;

const
  LIBEAY_DLL_NAME = '.\OpenSSL\1_0_1l\libeay32.dll';
  PROC_ADD_ALL_ALGORITHMS_NOCONF = 'OPENSSL_add_all_algorithms_noconf';
  PROC_ADD_ALL_ALGORITHMS = 'OpenSSL_add_all_algorithms';

  EVP_PKEY_RSA = IdSSLOpenSSLHeaders.EVP_PKEY_RSA;
  PKCS5_SALT_LEN = IdSSLOpenSSLHeaders.PKCS5_SALT_LEN;
  EVP_MAX_KEY_LENGTH = IdSSLOpenSSLHeaders.EVP_MAX_KEY_LENGTH;
  EVP_MAX_IV_LENGTH = IdSSLOpenSSLHeaders.EVP_MAX_IV_LENGTH;
  EVP_MAX_MD_SIZE = IdSSLOpenSSLHeaders.EVP_MAX_MD_SIZE;

type
  PEVP_PKEY = IdSSLOpenSSLHeaders.PEVP_PKEY;
  PRSA = IdSSLOpenSSLHeaders.PRSA;
  EVP_MD_CTX = IdSSLOpenSSLHeaders.EVP_MD_CTX;
  EVP_CIPHER_CTX = IdSSLOpenSSLHeaders.EVP_CIPHER_CTX;
  PEVP_CIPHER = IdSSLOpenSSLHeaders.PEVP_CIPHER;
  PEVP_MD = IdSSLOpenSSLHeaders.PEVP_MD;

type
  TSSLProgressCallbackFunction = procedure (status: integer; value: integer; cb_arg: pointer);
  TSSLPasswordCallbackFunction = function (buffer: TBytes; size: integer; rwflag: integer; u: pointer): integer; cdecl;
  TOpenSSL_InitFunction = procedure; cdecl;

type
  PEK_ARRAY = ^EK_ARRAY;
  EK_ARRAY = array of PByteArray;
  PUBK_ARRAY = array of PEVP_PKEY;
  PPUBK_ARRAY = ^PUBK_ARRAY;

function EVP_aes_256_cbc: PEVP_CIPHER; cdecl;
function EVP_md5: PEVP_MD; cdecl;
function EVP_sha1: PEVP_MD; cdecl;
function EVP_sha256: PEVP_MD; cdecl;
function EVP_PKEY_assign(pkey: PEVP_PKEY; key_type: integer; key: Pointer): integer; cdecl;
function EVP_PKEY_new: PEVP_PKEY; cdecl;
procedure EVP_PKEY_free(key: PEVP_PKEY); cdecl;
function EVP_PKEY_assign_RSA(pkey: PEVP_PKEY; key: PRSA): integer;
function EVP_PKEY_size(pkey: PEVP_PKEY): integer; cdecl;

procedure EVP_CIPHER_CTX_init(a: PEVP_CIPHER_CTX); cdecl;
procedure EVP_CipherInit_ex(A: PEVP_CIPHER_CTX); cdecl;
function EVP_CIPHER_CTX_cleanup(a: PEVP_CIPHER_CTX): integer; cdecl;
function EVP_CIPHER_CTX_block_size(ctx: PEVP_CIPHER_CTX): integer; cdecl;
procedure EVP_MD_CTX_init(ctx: PEVP_MD_CTX); cdecl;
function EVP_MD_CTX_cleanup(ctx: PEVP_MD_CTX): integer; cdecl;
function EVP_BytesToKey(cipher_type: PEVP_CIPHER; md: PEVP_MD; salt: PByte; data: PByte; datal: integer; count: integer; key: PByte; iv: PByte): integer; cdecl;
function EVP_EncryptInit_ex(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; impl: PENGINE; key: PByte; iv: PByte): integer; cdecl;
function EVP_EncryptInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; key: PByte; iv: PByte): integer; cdecl;
function EVP_EncryptUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer; cdecl;
function EVP_EncryptFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_DecryptInit_ex(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; impl: PENGINE; key: PByte; iv: PByte): integer; cdecl;
function EVP_DecryptInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; key: PByte; iv: PByte): integer; cdecl;
function EVP_DecryptUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer; cdecl;
function EVP_DecryptFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_DecryptFinal_ex(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_SealInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; ek: PEK_ARRAY; ekl: PIntegerArray; iv: PByte; pubk: PPUBK_ARRAY; npubk: integer): integer; cdecl;
function EVP_SealUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
function EVP_SealFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_OpenInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; ek: PByte; ekl: integer; iv: PByte; priv: PEVP_PKEY): integer; cdecl;
function EVP_OpenUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
function EVP_OpenFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
procedure EVP_DigestInit(ctx: PEVP_MD_CTX; md: PEVP_MD); cdecl;
function EVP_DigestInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer; cdecl;
function EVP_DigestUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer; cdecl;
function EVP_DigestFinal(ctx: PEVP_MD_CTX; md: PByte; var s: cardinal): integer; cdecl;
function EVP_DigestFinal_ex(ctx: PEVP_MD_CTX; md: PByte; var s: cardinal): integer; cdecl;
procedure EVP_SignInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
function EVP_SignInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
function EVP_SignUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
function EVP_SignFinal(ctx: PEVP_MD_CTX; sig: PByte; var s: integer; pkey: PEVP_PKEY): integer; cdecl;
procedure EVP_VerifyInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
function EVP_VerifyInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
function EVP_VerifyUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
function EVP_VerifyFinal(ctx: PEVP_MD_CTX; sig: PByte; s: integer; pkey: PEVP_PKEY): integer; cdecl;

function X509_get_pubkey(cert: PX509): PEVP_PKEY; cdecl;

procedure BIO_free_all(a: PBIO); cdecl;

function PEM_write_bio_RSA_PUBKEY(bp: PBIO; x: PRSA): integer; cdecl;
function PEM_read_bio_PUBKEY(bp: PBIO; x: PPEVP_PKEY; cb: TSSLPasswordCallbackFunction; u: pointer): PEVP_PKEY; cdecl;
function PEM_write_bio_PUBKEY(bp: PBIO; x: PEVP_PKEY): integer; cdecl;

function RAND_load_file(const filename: PAnsiChar; max_bytes: longint): integer; cdecl;
function RAND_bytes(buf: PByte; num: integer): integer; cdecl;
function RAND_pseudo_bytes(buf: PByte; num: integer): integer; cdecl;

function RSA_generate_key(num: integer; e: Cardinal; cb: TSSLProgressCallbackFunction; cb_arg: pointer): PRSA; cdecl;
procedure RSA_free(r: PRSA); cdecl;

implementation

resourcestring
  sLibeay32NotLoaded = 'libeay32.dll not loaded';
  sAddAllAlgorithmsProcNotFound = 'OpenSSL_add_all_algorithms procedure not defined in libeay32.dll';


function EVP_aes_256_cbc: PEVP_CIPHER; cdecl external LIBEAY_DLL_NAME;
function EVP_md5; cdecl external LIBEAY_DLL_NAME;
function EVP_sha1; cdecl external LIBEAY_DLL_NAME;
function EVP_sha256; cdecl external LIBEAY_DLL_NAME;
function EVP_PKEY_assign; cdecl external LIBEAY_DLL_NAME;
function EVP_PKEY_new; cdecl external LIBEAY_DLL_NAME;
procedure EVP_PKEY_free; cdecl external LIBEAY_DLL_NAME;
function EVP_PKEY_assign_RSA(pkey: PEVP_PKEY; key: PRSA): integer;
begin
  // Implemented as a macro in evp.h
  result := EVP_PKEY_assign(pkey, EVP_PKEY_RSA, PAnsiChar(key));
end;
function EVP_PKEY_size; cdecl external LIBEAY_DLL_NAME;

procedure EVP_CIPHER_CTX_init; cdecl external LIBEAY_DLL_NAME;
procedure EVP_CipherInit_ex; cdecl external LIBEAY_DLL_NAME;
function EVP_CIPHER_CTX_cleanup; cdecl external LIBEAY_DLL_NAME;
function EVP_CIPHER_CTX_block_size; cdecl external LIBEAY_DLL_NAME;
function EVP_BytesToKey; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptInit_ex; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptInit; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptUpdate; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptFinal; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptInit_ex; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptInit; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptUpdate; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptFinal; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptFinal_ex; cdecl external LIBEAY_DLL_NAME;
function EVP_SealInit; cdecl external LIBEAY_DLL_NAME;
function EVP_SealUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
begin
  // EVP_SealUpdate is #defined to EVP_EncryptUpdate in evp.h
  result := EVP_EncryptUpdate(ctx, data_out, outl, data_in, inl);
end;
function EVP_SealFinal; cdecl external LIBEAY_DLL_NAME;
function EVP_OpenInit; cdecl external LIBEAY_DLL_NAME;
function EVP_OpenUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
begin
  // EVP_OpenUpdate is #defined to EVP_DecryptUpdate in evp.h
  result := EVP_DecryptUpdate(ctx, data_out, outl, data_in, inl);
end;
function EVP_OpenFinal; cdecl external LIBEAY_DLL_NAME;
procedure EVP_MD_CTX_init; cdecl external LIBEAY_DLL_NAME;
function EVP_MD_CTX_cleanup; cdecl external LIBEAY_DLL_NAME;
procedure EVP_DigestInit; external LIBEAY_DLL_NAME;
function EVP_DigestInit_ex; external LIBEAY_DLL_NAME;
function EVP_DigestUpdate; external LIBEAY_DLL_NAME;
function EVP_DigestFinal; external LIBEAY_DLL_NAME;
function EVP_DigestFinal_ex; external LIBEAY_DLL_NAME;
procedure EVP_SignInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
begin
  // Defined as a macro in evp.h
  EVP_DigestInit(ctx, md);
end;
function EVP_SignInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
begin
  // Defined as a macro in evp.h
  result := EVP_DigestInit_ex(ctx, md, impl);
end;
function EVP_SignUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
begin
  // Defined as a macro in evp.h
  result := EVP_DigestUpdate(ctx, data, cnt);
end;
function EVP_SignFinal; cdecl external LIBEAY_DLL_NAME;
procedure EVP_VerifyInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
begin
  // Defined as a macro in evp.h
  EVP_DigestInit(ctx, md);
end;
function EVP_VerifyInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
begin
  // Defined as a macro in evp.h
  result := EVP_DigestInit_ex(ctx, md, impl);
end;
function EVP_VerifyUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
begin
  // Defined as a macro in evp.h
  result := EVP_DigestUpdate(ctx, data, cnt);
end;
function EVP_VerifyFinal; cdecl external LIBEAY_DLL_NAME;

function X509_get_pubkey; cdecl; external LIBEAY_DLL_NAME;

procedure BIO_free_all; cdecl external LIBEAY_DLL_NAME;

function PEM_write_bio_RSA_PUBKEY; cdecl external LIBEAY_DLL_NAME;
function PEM_read_bio_PUBKEY; cdecl external LIBEAY_DLL_NAME;
function PEM_write_bio_PUBKEY; cdecl external LIBEAY_DLL_NAME;

function RAND_load_file; cdecl external LIBEAY_DLL_NAME;
function RAND_bytes; cdecl external LIBEAY_DLL_NAME;
function RAND_pseudo_bytes; cdecl external LIBEAY_DLL_NAME;

function RSA_generate_key; cdecl external LIBEAY_DLL_NAME;
procedure RSA_free; cdecl external LIBEAY_DLL_NAME;

end.

于 2015-07-27T22:14:54.340 回答