有人可以举一个简单的例子,其中 state monad 比直接传递 state 更好吗?
bar1 (Foo x) = Foo (x + 1)
对比
bar2 :: State Foo Foo
bar2 = do
modify (\(Foo x) -> Foo (x + 1))
get
有人可以举一个简单的例子,其中 state monad 比直接传递 state 更好吗?
bar1 (Foo x) = Foo (x + 1)
对比
bar2 :: State Foo Foo
bar2 = do
modify (\(Foo x) -> Foo (x + 1))
get
状态传递通常是乏味的、容易出错的并且阻碍重构。例如,尝试按后序标记二叉树或玫瑰树:
data RoseTree a = Node a [RoseTree a] deriving (Show)
postLabel :: RoseTree a -> RoseTree Int
postLabel = fst . go 0 where
go i (Node _ ts) = (Node i' ts', i' + 1) where
(ts', i') = gots i ts
gots i [] = ([], i)
gots i (t:ts) = (t':ts', i'') where
(t', i') = go i t
(ts', i'') = gots i' ts
在这里,我必须以正确的顺序手动标记状态,传递正确的状态,并且必须确保标签和子节点在结果中的顺序正确(请注意,天真的使用foldr
orfoldl
子节点可能很容易导致不正确的行为)。
另外,如果我尝试将代码更改为预购,我必须进行容易出错的更改:
preLabel :: RoseTree a -> RoseTree Int
preLabel = fst . go 0 where
go i (Node _ ts) = (Node i ts', i') where -- first change
(ts', i') = gots (i + 1) ts -- second change
gots i [] = ([], i)
gots i (t:ts) = (t':ts', i'') where
(t', i') = go i t
(ts', i'') = gots i' ts
例子:
branch = Node ()
nil = branch []
tree = branch [branch [nil, nil], nil]
preLabel tree == Node 0 [Node 1 [Node 2 [],Node 3 []],Node 4 []]
postLabel tree == Node 4 [Node 2 [Node 0 [],Node 1 []],Node 3 []]
对比状态单子解决方案:
import Control.Monad.State
import Control.Applicative
postLabel' :: RoseTree a -> RoseTree Int
postLabel' = (`evalState` 0) . go where
go (Node _ ts) = do
ts' <- traverse go ts
i <- get <* modify (+1)
pure (Node i ts')
preLabel' :: RoseTree a -> RoseTree Int
preLabel' = (`evalState` 0) . go where
go (Node _ ts) = do
i <- get <* modify (+1)
ts' <- traverse go ts
pure (Node i ts')
这段代码不仅更简洁、更容易正确编写,而且导致订单前或订单后标签的逻辑更加透明。
PS:奖金适用风格:
postLabel' :: RoseTree a -> RoseTree Int
postLabel' = (`evalState` 0) . go where
go (Node _ ts) =
flip Node <$> traverse go ts <*> (get <* modify (+1))
preLabel' :: RoseTree a -> RoseTree Int
preLabel' = (`evalState` 0) . go where
go (Node _ ts) =
Node <$> (get <* modify (+1)) <*> traverse go ts
作为我上面评论State
的示例,您可以使用monad编写代码,例如
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}
import Data.Text (Text)
import qualified Data.Text as Text
import Control.Monad.State
data MyState = MyState
{ _count :: Int
, _messages :: [Text]
} deriving (Eq, Show)
makeLenses ''MyState
type App = State MyState
incrCnt :: App ()
incrCnt = modify (\my -> my & count +~ 1)
logMsg :: Text -> App ()
logMsg msg = modify (\my -> my & messages %~ (++ [msg]))
logAndIncr :: Text -> App ()
logAndIncr msg = do
incrCnt
logMsg msg
app :: App ()
app = do
logAndIncr "First step"
logAndIncr "Second step"
logAndIncr "Third step"
logAndIncr "Fourth step"
logAndIncr "Fifth step"
请注意,使用额外的运算符 fromControl.Lens
还可以让您编写incrCnt
and logMsg
as
incrCnt = count += 1
logMsg msg = messages %= (++ [msg])
State
这是与库结合使用的另一个好处lens
,但为了比较,我在本例中没有使用它们。要编写上面的等效代码,只传递参数,它看起来更像
incrCnt :: MyState -> MyState
incrCnt my = my & count +~ 1
logMsg :: MyState -> Text -> MyState
logMsg my msg = my & messages %~ (++ [msg])
logAndIncr :: MyState -> Text -> MyState
logAndIncr my msg =
let incremented = incrCnt my
logged = logMsg incremented msg
in logged
在这一点上还不算太糟糕,但是一旦我们进入下一步,我想你会看到代码重复的真正来源:
app :: MyState -> MyState
app initial =
let first_step = logAndIncr initial "First step"
second_step = logAndIncr first_step "Second step"
third_step = logAndIncr second_step "Third step"
fourth_step = logAndIncr third_step "Fourth step"
fifth_step = logAndIncr fourth_step "Fifth step"
in fifth_step
将其包装在一个Monad
实例中的另一个好处是您可以使用它的全部Control.Monad
功能Control.Applicative
:
app = mapM_ logAndIncr [
"First step",
"Second step",
"Third step",
"Fourth step",
"Fifth step"
]
与静态值相比,它在处理运行时计算的值时具有更大的灵活性。
手动状态传递和使用 monad 之间的区别State
只是State
monad 是对手动过程的抽象。它也恰好适合其他几个广泛使用的更通用的抽象,如Monad
、Applicative
、Functor
和其他一些抽象。如果您还使用StateT
转换器,那么您可以使用其他 monad 组合这些操作,例如IO
. 你能在没有State
and的情况下完成所有这些StateT
吗?当然可以,并且没有人阻止您这样做,但关键是State
抽象出这种模式并让您可以访问一个包含更通用工具的巨大工具箱。此外,对上述类型的小修改使相同的函数在多个上下文中工作:
incrCnt :: MonadState MyState m => m ()
logMsg :: MonadState MyState m => Text -> m ()
logAndIncr :: MonadState MyState m => Text -> m ()
这些现在将与App
, 或StateT MyState IO
, 或任何其他带有MonadState
实现的 monad 堆栈一起使用。它使得它比简单的参数传递更可重用,这只能通过抽象是StateT
.
根据我的经验,许多 Monad 的要点在您进入更大的示例之前并没有真正起作用,所以这里有一个使用State
(well, StateT ... IO
) 来解析传入 Web 服务的请求的示例。
模式是可以使用一堆不同类型的选项调用此 Web 服务,尽管除了其中一个选项之外的所有选项都具有不错的默认值。如果我收到带有未知键值的传入 JSON 请求,我应该使用适当的消息中止。我使用状态来跟踪当前配置是什么,以及 JSON 请求的其余部分是什么,以及一堆访问器方法。
(基于当前生产中的代码,所有内容的名称都发生了变化,并且该服务实际执行的细节被掩盖了)
{-# LANGUAGE OverloadedStrings #-}
module XmpConfig where
import Data.IORef
import Control.Arrow (first)
import Control.Monad
import qualified Data.Text as T
import Data.Aeson hiding ((.=))
import qualified Data.HashMap.Strict as MS
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.State (execStateT, StateT, gets, modify)
import qualified Data.Foldable as DF
import Data.Maybe (fromJust, isJust)
data Taggy = UseTags Bool | NoTags
newtype Locale = Locale String
data MyServiceConfig = MyServiceConfig {
_mscTagStatus :: Taggy
, _mscFlipResult :: Bool
, _mscWasteTime :: Bool
, _mscLocale :: Locale
, _mscFormatVersion :: Int
, _mscJobs :: [String]
}
baseWebConfig :: IO (IORef [String], IORef [String], MyServiceConfig)
baseWebConfig = do
infoRef <- newIORef []
warningRef <- newIORef []
let cfg = MyServiceConfig {
_mscTagStatus = NoTags
, _mscFlipResult = False
, _mscWasteTime = False
, _mscLocale = Locale "en-US"
, _mscFormatVersion = 1
, _mscJobs = []
}
return (infoRef, warningRef, cfg)
parseLocale :: T.Text -> Maybe Locale
parseLocale = Just . Locale . T.unpack -- The real thing does more
parseJSONReq :: MS.HashMap T.Text Value ->
IO (IORef [String], IORef [String], MyServiceConfig)
parseJSONReq m = liftM snd
(baseWebConfig >>= (\c -> execStateT parse' (m, c)))
where
parse' :: StateT (MS.HashMap T.Text Value,
(IORef [String], IORef [String], MyServiceConfig))
IO ()
parse' = do
let addWarning s = do let snd3 (_, b, _) = b
r <- gets (snd3 . snd)
liftIO $ modifyIORef r (++ [s])
-- These two functions suck a key/value off the input map and
-- pass the value on to the handler "h"
onKey k h = onKeyMaybe k $ DF.mapM_ h
onKeyMaybe k h = do myb <- gets fst
modify $ first $ MS.delete k
h (MS.lookup k myb)
-- Access the "lns" field of the configuration
config setter = modify (\(a, (b, c, d)) -> (a, (b, c, setter d)))
onKey "tags" $ \x -> case x of
Bool True -> config $ \c -> c {_mscTagStatus = UseTags False}
String "true" -> config $ \c -> c {_mscTagStatus = UseTags False}
Bool False -> config $ \c -> c {_mscTagStatus = NoTags}
String "false" -> config $ \c -> c {_mscTagStatus = NoTags}
String "inline" -> config $ \c -> c {_mscTagStatus = UseTags True}
q -> addWarning ("Bad value ignored for tags: " ++ show q)
onKey "reverse" $ \x -> case x of
Bool r -> config $ \c -> c {_mscFlipResult = r}
q -> addWarning ("Bad value ignored for reverse: " ++ show q)
onKey "spin" $ \x -> case x of
Bool r -> config $ \c -> c {_mscWasteTime = r}
q -> addWarning ("Bad value ignored for spin: " ++ show q)
onKey "language" $ \x -> case x of
String s | isJust (parseLocale s) ->
config $ \c -> c {_mscLocale = fromJust $ parseLocale s}
q -> addWarning ("Bad value ignored for language: " ++ show q)
onKey "format" $ \x -> case x of
Number 1 -> config $ \c -> c {_mscFormatVersion = 1}
Number 2 -> config $ \c -> c {_mscFormatVersion = 2}
q -> addWarning ("Bad value ignored for format: " ++ show q)
onKeyMaybe "jobs" $ \p -> case p of
Just (Array x) -> do q <- parseJobs x
config $ \c -> c {_mscJobs = q}
Just (String "test") ->
config $ \c -> c {_mscJobs = ["test1", "test2"]}
Just other -> fail $ "Bad value for jobs: " ++ show other
Nothing -> fail "Missing value for jobs"
m' <- gets fst
unless (MS.null m') (fail $ "Unrecognized key(s): " ++ show (MS.keys m'))
parseJobs :: (Monad m, DF.Foldable b) => b Value -> m [String]
parseJobs = DF.foldrM (\a b -> liftM (:b) (parseJob a)) []
parseJob :: (Monad m) => Value -> m String
parseJob (String s) = return (T.unpack s)
parseJob q = fail $ "Bad job value: " ++ show q