我正在制作一个基于英特尔 x86 架构的保护模式操作系统,并且正在寻找一些关于如何通过汇编代码或类似代码关闭计算机电源的信息。你能帮我解决这个问题吗?
2 回答
来自http://forum.osdev.org/viewtopic.php?t=16990
ACPI 关闭在技术上是一件非常简单的事情,只需要一个 outw(PM1a_CNT, SLP_TYPa | SLP_EN ); 并且计算机已关闭。问题在于这些值的收集,尤其是因为 SLP_TYPa 位于 DSDT 中的 _S5 对象中,因此进行了 AML 编码。
下面是在哪里可以找到这些字段的简单“地图”。
“RSD PTR” || 偏移量 16 处的 RsdtAddress 指针 || \/ “RSDT” || 偏移量 36 + 4 * n 处的指针(检查 sig "FACP" 的目标以获得正确的 n) || \/ “FACP” || ||======\ || || || PM1a_CNT_BLK;偏移量:64(参见第 4.7.3.2 节) || PM1b_CNT_BLK;偏移量:68 || || || \/ || SLP_TYPx; 位 10-12 || SLP_EN; 位 13 || 偏移量 40 处的 DSDT 指针 || \/ “DSDT”(以某种方式导出 \_S5 对象。)
要导出\_S5
对象,通常会使用 AML 解释器,但考虑到我们正在构建一个爱好操作系统,这显然不是一种选择。简单的解决方案是手动扫描 DSDT。AML 语言指定 _... 对象只定义一次,这使得查找\_S5
对象变得非常简单,因为简单memcmp()
就足够了。一旦找到,SLP_TYPx
就会提取这些值。
\_S5 对象的字节码 ----------------------------------------- | (可选)| | | | 名称OP | \ | _ | 小号 | 5 | _ 08 | 5A | 5F | 53 | 35 | 5F -------------------------------------------------- -------------------------------------------------- -------- | | | ( SLP_TYPa ) | (SLP_TYPb) | (保留) | (预订的 ) 包OP | 包装长度 | 数字元素 | 字节前缀编号 | 字节前缀编号 | 字节前缀编号 | 字节前缀编号 12 | 0A | 04 | 0A 05 | 0A 05 | 0A 05 | 0A 05 ----这个结构也见过---------- 包OP | 包装长度 | 数字元素 | 12 | 06 | 04 | 00 00 00 00
信息的收集最好在操作系统初始化时进行,因为之后您可以重复使用内存,而不必担心会损坏它。
现在剩下的就是outw(PM1a_CNT, SLP_TYPa | SLP_EN );
你走了。如果PM1b_CNT != 0
你需要用 b 重复它。
如果这有点太抽象,这里有一些代码可以看
//
// here is the slighlty complicated ACPI poweroff code
//
#include <stddef.h>
#include <print.h>
#include <string.h>
#include <io.h>
#include <time.h>
dword *SMI_CMD;
byte ACPI_ENABLE;
byte ACPI_DISABLE;
dword *PM1a_CNT;
dword *PM1b_CNT;
word SLP_TYPa;
word SLP_TYPb;
word SLP_EN;
word SCI_EN;
byte PM1_CNT_LEN;
struct RSDPtr
{
byte Signature[8];
byte CheckSum;
byte OemID[6];
byte Revision;
dword *RsdtAddress;
};
struct FACP
{
byte Signature[4];
dword Length;
byte unneded1[40 - 8];
dword *DSDT;
byte unneded2[48 - 44];
dword *SMI_CMD;
byte ACPI_ENABLE;
byte ACPI_DISABLE;
byte unneded3[64 - 54];
dword *PM1a_CNT_BLK;
dword *PM1b_CNT_BLK;
byte unneded4[89 - 72];
byte PM1_CNT_LEN;
};
// check if the given address has a valid header
unsigned int *acpiCheckRSDPtr(unsigned int *ptr)
{
char *sig = "RSD PTR ";
struct RSDPtr *rsdp = (struct RSDPtr *) ptr;
byte *bptr;
byte check = 0;
int i;
if (memcmp(sig, rsdp, 8) == 0)
{
// check checksum rsdpd
bptr = (byte *) ptr;
for (i=0; i<sizeof(struct RSDPtr); i++)
{
check += *bptr;
bptr++;
}
// found valid rsdpd
if (check == 0) {
/*
if (desc->Revision == 0)
wrstr("acpi 1");
else
wrstr("acpi 2");
*/
return (unsigned int *) rsdp->RsdtAddress;
}
}
return NULL;
}
// finds the acpi header and returns the address of the rsdt
unsigned int *acpiGetRSDPtr(void)
{
unsigned int *addr;
unsigned int *rsdp;
// search below the 1mb mark for RSDP signature
for (addr = (unsigned int *) 0x000E0000; (int) addr<0x00100000; addr += 0x10/sizeof(addr))
{
rsdp = acpiCheckRSDPtr(addr);
if (rsdp != NULL)
return rsdp;
}
// at address 0x40:0x0E is the RM segment of the ebda
int ebda = *((short *) 0x40E); // get pointer
ebda = ebda*0x10 &0x000FFFFF; // transform segment into linear address
// search Extended BIOS Data Area for the Root System Description Pointer signature
for (addr = (unsigned int *) ebda; (int) addr<ebda+1024; addr+= 0x10/sizeof(addr))
{
rsdp = acpiCheckRSDPtr(addr);
if (rsdp != NULL)
return rsdp;
}
return NULL;
}
// checks for a given header and validates checksum
int acpiCheckHeader(unsigned int *ptr, char *sig)
{
if (memcmp(ptr, sig, 4) == 0)
{
char *checkPtr = (char *) ptr;
int len = *(ptr + 1);
char check = 0;
while (0<len--)
{
check += *checkPtr;
checkPtr++;
}
if (check == 0)
return 0;
}
return -1;
}
int acpiEnable(void)
{
// check if acpi is enabled
if ( (inw((unsigned int) PM1a_CNT) &SCI_EN) == 0 )
{
// check if acpi can be enabled
if (SMI_CMD != 0 && ACPI_ENABLE != 0)
{
outb((unsigned int) SMI_CMD, ACPI_ENABLE); // send acpi enable command
// give 3 seconds time to enable acpi
int i;
for (i=0; i<300; i++ )
{
if ( (inw((unsigned int) PM1a_CNT) &SCI_EN) == 1 )
break;
sleep(10);
}
if (PM1b_CNT != 0)
for (; i<300; i++ )
{
if ( (inw((unsigned int) PM1b_CNT) &SCI_EN) == 1 )
break;
sleep(10);
}
if (i<300) {
wrstr("enabled acpi.\n");
return 0;
} else {
wrstr("couldn't enable acpi.\n");
return -1;
}
} else {
wrstr("no known way to enable acpi.\n");
return -1;
}
} else {
//wrstr("acpi was already enabled.\n");
return 0;
}
}
//
// bytecode of the \_S5 object
// -----------------------------------------
// | (optional) | | | |
// NameOP | \ | _ | S | 5 | _
// 08 | 5A | 5F | 53 | 35 | 5F
//
// -----------------------------------------------------------------------------------------------------------
// | | | ( SLP_TYPa ) | ( SLP_TYPb ) | ( Reserved ) | (Reserved )
// PackageOP | PkgLength | NumElements | byteprefix Num | byteprefix Num | byteprefix Num | byteprefix Num
// 12 | 0A | 04 | 0A 05 | 0A 05 | 0A 05 | 0A 05
//
//----this-structure-was-also-seen----------------------
// PackageOP | PkgLength | NumElements |
// 12 | 06 | 04 | 00 00 00 00
//
// (Pkglength bit 6-7 encode additional PkgLength bytes [shouldn't be the case here])
//
int initAcpi(void)
{
unsigned int *ptr = acpiGetRSDPtr();
// check if address is correct ( if acpi is available on this pc )
if (ptr != NULL && acpiCheckHeader(ptr, "RSDT") == 0)
{
// the RSDT contains an unknown number of pointers to acpi tables
int entrys = *(ptr + 1);
entrys = (entrys-36) /4;
ptr += 36/4; // skip header information
while (0<entrys--)
{
// check if the desired table is reached
if (acpiCheckHeader((unsigned int *) *ptr, "FACP") == 0)
{
entrys = -2;
struct FACP *facp = (struct FACP *) *ptr;
if (acpiCheckHeader((unsigned int *) facp->DSDT, "DSDT") == 0)
{
// search the \_S5 package in the DSDT
char *S5Addr = (char *) facp->DSDT +36; // skip header
int dsdtLength = *(facp->DSDT+1) -36;
while (0 < dsdtLength--)
{
if ( memcmp(S5Addr, "_S5_", 4) == 0)
break;
S5Addr++;
}
// check if \_S5 was found
if (dsdtLength > 0)
{
// check for valid AML structure
if ( ( *(S5Addr-1) == 0x08 || ( *(S5Addr-2) == 0x08 && *(S5Addr-1) == '\\') ) && *(S5Addr+4) == 0x12 )
{
S5Addr += 5;
S5Addr += ((*S5Addr &0xC0)>>6) +2; // calculate PkgLength size
if (*S5Addr == 0x0A)
S5Addr++; // skip byteprefix
SLP_TYPa = *(S5Addr)<<10;
S5Addr++;
if (*S5Addr == 0x0A)
S5Addr++; // skip byteprefix
SLP_TYPb = *(S5Addr)<<10;
SMI_CMD = facp->SMI_CMD;
ACPI_ENABLE = facp->ACPI_ENABLE;
ACPI_DISABLE = facp->ACPI_DISABLE;
PM1a_CNT = facp->PM1a_CNT_BLK;
PM1b_CNT = facp->PM1b_CNT_BLK;
PM1_CNT_LEN = facp->PM1_CNT_LEN;
SLP_EN = 1<<13;
SCI_EN = 1;
return 0;
} else {
wrstr("\\_S5 parse error.\n");
}
} else {
wrstr("\\_S5 not present.\n");
}
} else {
wrstr("DSDT invalid.\n");
}
}
ptr++;
}
wrstr("no valid FACP present.\n");
} else {
wrstr("no acpi.\n");
}
return -1;
}
void acpiPowerOff(void)
{
// SCI_EN is set to 1 if acpi shutdown is possible
if (SCI_EN == 0)
return;
acpiEnable();
// send the shutdown command
outw((unsigned int) PM1a_CNT, SLP_TYPa | SLP_EN );
if ( PM1b_CNT != 0 )
outw((unsigned int) PM1b_CNT, SLP_TYPb | SLP_EN );
wrstr("acpi poweroff failed.\n");
}
如需更多信息,请阅读 ACPI 1.0a 规范的相应部分
9.1.7 从工作状态过渡到软关机状态 7.5.2 \_Sx 状态 7.4.1 \_S5 4.7.2.3 休眠/唤醒控制 16.3 AML 字节流字节值 16.2.3 包长度编码
这适用于我所有的机器 bochs 和 qemu。但我注意到不需要启用 ACPI 来让电脑关机。虽然我不知道是否总是这样。
如果你只是想玩一点。对于 bochs 和 qemu 它是outw( 0xB004, 0x0 | 0x2000 );
APM
https://en.wikipedia.org/wiki/Advanced_Power_Management
qemu-system-i386
在2.0.0 Ubuntu 14.04上测试的方法:
mov $0x5301, %ax
xor %bx, %bx
int $0x15
/* Try to set apm version (to 1.2). */
mov $0x530e, %ax
xor %bx, %bx
mov $0x0102, %cx
int $0x15
/* Turn off the system. */
mov $0x5307, %ax
mov $0x0001, %bx
mov $0x0003, %cx
int $0x15
关于 QEMU 上的确切编译和运行步骤,请参阅这个 repo
osdev.org 文章:http ://wiki.osdev.org/Shutdown , http://wiki.osdev.org/APM
ACPI是更新、更好的方法。