In NER(Named Entity Recognition) example in python-crf package website we see this function as feature generator:
def word2features(sent, i):
word = sent[i][0]
postag = sent[i][1]
features = [
'bias',
'word.lower=' + word.lower(),
'word[-3:]=' + word[-3:],
'word[-2:]=' + word[-2:],
'word.isupper=%s' % word.isupper(),
'word.istitle=%s' % word.istitle(),
'word.isdigit=%s' % word.isdigit(),
'postag=' + postag,
'postag[:2]=' + postag[:2],
]
if i > 0:
word1 = sent[i-1][0]
postag1 = sent[i-1][1]
features.extend([
'-1:word.lower=' + word1.lower(),
'-1:word.istitle=%s' % word1.istitle(),
'-1:word.isupper=%s' % word1.isupper(),
'-1:postag=' + postag1,
'-1:postag[:2]=' + postag1[:2],
])
else:
features.append('BOS')
if i < len(sent)-1:
word1 = sent[i+1][0]
postag1 = sent[i+1][1]
features.extend([
'+1:word.lower=' + word1.lower(),
'+1:word.istitle=%s' % word1.istitle(),
'+1:word.isupper=%s' % word1.isupper(),
'+1:postag=' + postag1,
'+1:postag[:2]=' + postag1[:2],
])
else:
features.append('EOS')
return features
You can see the completed tutorial there: python-crfsuite NER example
As you see after appending meaningful features - like word.lower and ...- two features has appended.
features.append('EOS')
and
features.append('BOS')
My question is "What's meaning of BOS and EOS and what is the role of them?"