什么是约束种类?
为什么有人会使用它(在实践中)?
到底有什么好处呢?
能否举一个简单的代码示例来说明前两个问题的答案?
例如,为什么在此代码中使用它?
好吧,我会提到它允许你做的两件实际的事情:
也许最好用一个例子来说明这一点。一个经典的 Haskell 缺点是,你不能Functor
为对它们的类型参数施加类约束的类型创建实例。例如,库Set
中的类containers
,它需要Ord
对其元素进行约束。原因是在“香草”Haskell 中,您必须对类本身进行约束:
class OrdFunctor f where
fmap :: Ord b => (a -> b) -> f a -> f b
...但是此类仅适用于需要特别Ord
约束的类型。不是通用解决方案!
那么,如果我们可以采用该类定义并抽象出Ord
约束,让各个实例说出它们需要什么约束呢?好吧,ConstraintKinds
再加上TypeFamilies
允许:
{-# LANGUAGE ConstraintKinds, TypeFamilies, FlexibleInstances #-}
import Prelude hiding (Functor(..))
import GHC.Exts (Constraint)
import Data.Set (Set)
import qualified Data.Set as Set
-- | A 'Functor' over types that satisfy some constraint.
class Functor f where
-- | The constraint on the allowed element types. Each
-- instance gets to choose for itself what this is.
type Allowed f :: * -> Constraint
fmap :: Allowed f b => (a -> b) -> f a -> f b
instance Functor Set where
-- | 'Set' gets to pick 'Ord' as the constraint.
type Allowed Set = Ord
fmap = Set.map
instance Functor [] where
-- | And `[]` can pick a different constraint than `Set` does.
type Allowed [] = NoConstraint
fmap = map
-- | A dummy class that means "no constraint."
class NoConstraint a where
-- | All types are trivially instances of 'NoConstraint'.
instance NoConstraint a where
(请注意,这不是创建Functor
实例的唯一障碍Set
;请参阅此讨论。此外,感谢这个答案的NoConstraint
技巧。)
不过,这种解决方案还没有被普遍采用,因为ConstraintKinds
它或多或少还是一个新特性。
另一个用途ConstraintKinds
是通过类约束或类对类型进行参数化。我将重现我编写的这个 Haskell“形状示例”代码:
{-# LANGUAGE GADTs, ConstraintKinds, KindSignatures, DeriveDataTypeable #-}
{-# LANGUAGE TypeOperators, ScopedTypeVariables, FlexibleInstances #-}
module Shape where
import Control.Applicative ((<$>), (<|>))
import Data.Maybe (mapMaybe)
import Data.Typeable
import GHC.Exts (Constraint)
-- | Generic, reflective, heterogeneous container for instances
-- of a type class.
data Object (constraint :: * -> Constraint) where
Obj :: (Typeable a, constraint a) => a -> Object constraint
deriving Typeable
-- | Downcast an 'Object' to any type that satisfies the relevant
-- constraints.
downcast :: forall a constraint. (Typeable a, constraint a) =>
Object constraint -> Maybe a
downcast (Obj (value :: b)) =
case eqT :: Maybe (a :~: b) of
Just Refl -> Just value
Nothing -> Nothing
这里类型的参数Object
是一个类型类(kind * -> Constraint
),所以你可以有像Object Shape
where Shape
is a class 这样的类型:
class Shape shape where
getArea :: shape -> Double
-- Note how the 'Object' type is parametrized by 'Shape', a class
-- constraint. That's the sort of thing ConstraintKinds enables.
instance Shape (Object Shape) where
getArea (Obj o) = getArea o
该Object
类型的作用是两个特征的组合:
GADTs
),它允许我们将异构类型的值存储在同一Object
类型中。ConstraintKinds
,它允许我们而不是硬编码Object
到某些特定的类约束集,而是让该Object
类型的用户指定他们想要的约束作为该Object
类型的参数。现在有了它,我们不仅可以制作一个异构的Shape
实例列表:
data Circle = Circle { radius :: Double }
deriving Typeable
instance Shape Circle where
getArea (Circle radius) = pi * radius^2
data Rectangle = Rectangle { height :: Double, width :: Double }
deriving Typeable
instance Shape Rectangle where
getArea (Rectangle height width) = height * width
exampleData :: [Object Shape]
exampleData = [Obj (Circle 1.5), Obj (Rectangle 2 3)]
...但是由于我们可以向下转换Typeable
的约束:如果我们正确猜测包含在 an 中的类型,我们可以恢复该原始类型:Object
Object
-- | For each 'Shape' in the list, try to cast it to a Circle. If we
-- succeed, then pass the result to a monomorphic function that
-- demands a 'Circle'. Evaluates to:
--
-- >>> example
-- ["A Circle of radius 1.5","A Shape with area 6.0"]
example :: [String]
example = mapMaybe step exampleData
where step shape = describeCircle <$> (downcast shape)
<|> Just (describeShape shape)
describeCircle :: Circle -> String
describeCircle (Circle radius) = "A Circle of radius " ++ show radius
describeShape :: Shape a => a -> String
describeShape shape = "A Shape with area " ++ show (getArea shape)