1

我正在创建一个带有字典和 ngram 标记化的文档术语矩阵。它适用于我的 Windows 7 笔记本电脑,但不适用于类似配置的 Ubuntu 14.04.2 服务器。 更新:它也适用于 Centos 服务器。

library(tm)
library(RWeka)
library((SnowballC))

newBigramTokenizer = function(x) {
  tokenizer1 = RWeka::NGramTokenizer(x, RWeka::Weka_control(min = 1, max = 2))
  if (length(tokenizer1) != 0L) { return(tokenizer1)
  } else return(WordTokenizer(x))
}

textvect <- c("this is a story about a girl", 
              "this is a story about a boy", 
              "a boy and a girl went to the store",
              "a store is a place to buy things",
              "you can also buy things from a boy or a girl",
              "the word store can also be a verb meaning to position something for later use")

textvect <- iconv(textvect, to = "utf-8")
textsource <- VectorSource(textvect)
textcorp <- Corpus(textsource)

textdict <- c("boy", "girl", "store", "story about")
textdict <- iconv(textdict, to = "utf-8")

# OK
dtm <- DocumentTermMatrix(textcorp, control=list(dictionary=textdict))

# OK on Windows laptop
# freezes or generates error on Ubuntu server
dtm <- DocumentTermMatrix(textcorp, control=list(tokenize=newBigramTokenizer,
                                             dictionary=textdict))

来自 Ubuntu 服务器的错误(在源示例的最后一行):

/usr/lib/jvm/java-7-openjdk-amd64/jre/lib/rt.jar: invalid LOC header (bad signature)
Error in simple_triplet_matrix(i = i, j = j, v = as.numeric(v), nrow = length(allTerms),  :
  'i, j' invalid
In addition: Warning messages:
1: In mclapply(unname(content(x)), termFreq, control) :
  scheduled core 1 encountered error in user code, all values of the job will be affected
2: In simple_triplet_matrix(i = i, j = j, v = as.numeric(v), nrow = length(allTerms),  :
  NAs introduced by coercion

我已经尝试了Twitter 数据分析中的一些建议 - 术语文档矩阵中的 错误和 simple_triplet_matrix 中的错误 - 无法使用 RWeka 来计算短语

我原以为我的问题可能归因于其中之一,但现在脚本运行在与有问题的 Ubuntu 服务器具有相同语言环境和 JVM 的 Centos 服务器上。

  • 语言环境
  • JVM 的细微差别
  • 并行库?错误消息中提到了 mclapply,会话信息中列出了并行(尽管适用于所有系统。)

以下是两种环境:

R 版本 3.1.2 (2014-10-31) 平台:x86_64-w64-mingw32/x64(64 位)

PS C:\> java -version
Picked up JAVA_TOOL_OPTIONS: -Dfile.encoding=UTF-8
java version "1.7.0_72"
Java(TM) SE Runtime Environment (build 1.7.0_72-b14)
Java HotSpot(TM) 64-Bit Server VM (build 24.72-b04, mixed mode)

locale: 
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] RWeka_0.4-23 tm_0.6       NLP_0.1-5   

loaded via a namespace (and not attached):
[1] grid_3.1.2         parallel_3.1.2     rJava_0.9-6        RWekajars_3.7.11-1 slam_0.1-32       
[6] tools_3.1.2         

R 版本 3.1.2 (2014-10-31) 平台:x86_64-pc-linux-gnu (64-bit)

$ java -version
java version "1.7.0_79"
OpenJDK Runtime Environment (IcedTea 2.5.5) (7u79-2.5.5-0ubuntu0.14.04.2)
OpenJDK 64-Bit Server VM (build 24.79-b02, mixed mode)

locale:
[1] LC_CTYPE=en_US.UTF-8          LC_NUMERIC=C                  LC_TIME=en_US.UTF-8          
[4] LC_COLLATE=en_US.UTF-8        LC_MONETARY=en_US.UTF-8       LC_MESSAGES=en_US.UTF-8      
[7] LC_PAPER=en_US.UTF-8          LC_NAME=en_US.UTF-8           LC_ADDRESS=en_US.UTF-8       
[10] LC_TELEPHONE=en_US.UTF-8      LC_MEASUREMENT=en_US.UTF-8    LC_IDENTIFICATION=en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] RWeka_0.4-23 tm_0.6       NLP_0.1-5   

loaded via a namespace (and not attached):
[1] grid_3.1.2         parallel_3.1.2     rJava_0.9-6        RWekajars_3.7.11-1 slam_0.1-32       
[6] tools_3.1.2     

R 版本 3.2.0 (2015-04-16) 平台:x86_64-redhat-linux-gnu (64-bit) 运行于:CentOS Linux 7 (Core)

$ java -version
java version "1.7.0_79"
OpenJDK Runtime Environment (rhel-2.5.5.1.el7_1-x86_64 u79-b14)
OpenJDK 64-Bit Server VM (build 24.79-b02, mixed mode)


locale:
 [1] LC_CTYPE=en_US.UTF-8          LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8           LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8       LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8          LC_NAME=en_US.UTF-8
 [9] LC_ADDRESS=en_US.UTF-8        LC_TELEPHONE=en_US.UTF-8
[11] LC_MEASUREMENT=en_US.UTF-8    LC_IDENTIFICATION=en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base

other attached packages:
[1] RWeka_0.4-24 tm_0.6-2     NLP_0.1-8

loaded via a namespace (and not attached):
[1] parallel_3.2.0     tools_3.2.0        slam_0.1-32        grid_3.2.0
[5] rJava_0.9-6        RWekajars_3.7.12-1
4

1 回答 1

2

如果您更喜欢更简单但同样灵活或强大的东西,那么试试 quanteda包怎么样?它可以在三行中快速完成您的字典和二元组任务:

# or: devtools::install_github("kbenoit/quanteda")
require(quanteda)

# use dictionary() to construct dictionary from named list
textdict <- dictionary(list(mydict = c("boy", "girl", "store", "story about")))

# convert to document-feature matrix, with 1grams + 2grams, apply dictionary
dfm(textvect, dictionary = textdict, ngrams = 1:2, concatenator = " ")
## Document-feature matrix of: 6 documents, 1 feature.
## 6 x 1 sparse Matrix of class "dfmSparse"
##        features
## docs    mydict
##   text1      2
##   text2      2
##   text3      3
##   text4      1
##   text5      2
##   text6      1

# alternative is to consider the dictionary as a thesaurus of synonyms, 
# not exclusive in feature selection as is a dictionary 
dfm.all <- dfm(textvect, thesaurus = textdict,
               ngrams = 1:2, concatenator = " ", verbose = FALSE)
topfeatures(dfm.all)
##      a  MYDICT   a boy  a girl      is    is a      to a story   about about a 
##     11      11       3       3       3       3       3       2       2       2 

dfm_sort(dfm.all)[1:6, 1:12]
## Document-feature matrix of: 6 documents, 12 features.
## 6 x 12 sparse Matrix of class "dfmSparse"
##        features
## docs    a MYDICT a boy a girl is is a to a story about about a also buy
##   text1 2      2     0      1  1    1  0       1     1       1    0   0
##   text2 2      2     1      0  1    1  0       1     1       1    0   0
##   text3 2      3     1      1  0    0  1       0     0       0    0   0
##   text4 2      1     0      0  1    1  1       0     0       0    0   1
##   text5 2      2     1      1  0    0  0       0     0       0    1   1
##   text6 1      1     0      0  0    0  1       0     0       0    1   0
于 2015-07-08T18:57:30.933 回答