3

我有一个分层模型,用于学习只有单个隐藏层的贝叶斯网络。网络参数分为 4 组输入到隐藏和隐藏到输出的权重和偏差。在每个参数组上定义一个高斯先验。超参数,这些先验的标准差,具有参数 alpha=1 的 Gamma 分布。和β= 1/60。输出噪声也是高斯噪声;Gamma(alpha=1., beta=200) 超过其标准偏差。NUTS 阶跃函数用于采样,其缩放参数设置为仅参数(不包括超参数)的最大后验。数据是一维的,来自 [0,1],其中使用简单的一维正弦函数提供观察结果。我希望这组采样网络能够对数据进行插值,并在与这些观察点的距离增加时开始不同意/发散,从而创建类似于高斯过程模型产生的形状。令人惊讶的是,结果与我的预期不同。看起来一些烦人的约束阻止了采样器做得很好并从整个后部采样: 在此处输入图像描述 (红线是 MAP 网络产生的,黑线是底层函数,3 个小红点是数据) pymc3 伙计们,你们对这个问题的原因有什么解释吗?我该如何解决?

import numpy as np
import  theano
import theano.tensor as T
import pymc3 as pm
import matplotlib.pyplot as plt
import scipy

#
co = 3 #  4 ,5,6,7 ,8
numHiddenUnits = 100
numObservations= 3  # 6 ,7, 8
randomSeed = 1235
numSamples = 5500



def z_score(x,mean=None,std=None):
    if mean is None or std is None:
        mean,std = np.mean(x,axis=0),np.std(x,axis=0)
    return x - mean/std,mean,std



def sample(nHiddenUnts,X,Y):
    '''
     samples a set of ANNs from the posterior
   '''
    nFeatures = X.shape[1]
    with pm.Model() as model:

        #Gamma Hyperpriors

        alpha,beta = 1.,1./60.
        # standard deviation: Bias(Hidden-out)
        bhoSd =  pm.Gamma('bhoSd',alpha=alpha,beta=beta)
        #standard deviation: Weights (Hidden-out)
        whoSd =  pm.Gamma('whoSd',alpha=alpha,beta=beta)
        bihSd =  pm.Gamma('bihSd',alpha=alpha,beta=beta)
        #standard deviation: Bias (input-hidden)
        wihSd =  pm.Gamma('wihSd',alpha=alpha,beta=beta)
        #standard deviation:  output noise
        noiseSd = pm.Gamma('noiseSd',alpha=alpha,beta=200.)

        wihSd.tag.test_value= bihSd.tag.test_value=   whoSd.tag.test_value= bhoSd.tag.test_value = 200
    noiseSd.tag.test_value = 0.002


        #priors
        #Bias (HiddenOut)
        bho = pm.Normal('bho',mu=0,sd=bhoSd)
        bho.tag.test_value = 1
        who = pm.Normal('who',mu=0,sd=whoSd,shape=(nHiddenUnts,1) )
        who.tag.test_value =  np.random.normal(size=nHiddenUnts,loc=0,scale=1).reshape(nHiddenUnts,1)  #np.ones(shape=(nHiddenUnts,1))
        #Bias input-hidden
        bih = pm.Normal('bih',mu=0,sd=bihSd ,shape=nHiddenUnts)
        bih.tag.test_value =np.random.normal(size=nHiddenUnts,loc=0,scale=1)#np.ones(shape=nHiddenUnts)
    wih= pm.Normal('wih',mu=0,sd=wihSd ,shape= (nFeatures,nHiddenUnts))
        wih.tag.test_value =np.random.normal(size=nFeatures*nHiddenUnts,loc=0,scale=1).reshape(nFeatures,nHiddenUnts)#np.ones(shape= (nFeatures,nHiddenUnts))


        netOut=T.dot( T.nnet.sigmoid( T.dot( X , wih ) + bih ) , who ) + bho


        #likelihood
        likelihood = pm.Normal('likelihood',mu=netOut,sd=noiseSd,observed= Y)

        print("model built")
        #==================================================================

        start1 = pm.find_MAP(fmin=scipy.optimize.fmin_l_bfgs_b, vars=[bho,who,bih,wih],model=model)
        #start2 = pm.find_MAP(start=start1,    fmin=scipy.optimize.fmin_l_bfgs_b, vars=[noiseSd,wihSd,bihSd ,whoSd,bhoSd],model=model)
        step = pm.NUTS(scaling=start1)
        #step =  pm.HamiltonianMC(scaling=start1,path_length=5.,step_scale=.05,)
        trace = pm.sample(10,step,start=start1, progressbar=True,random_seed=1234)[:]
        step1 = pm.NUTS(scaling=trace[-1])
        print '-'
        trace = pm.sample(numSamples,step1,start=trace[-1], progressbar=True,random_seed=1234)[100:]

           #========================================================================
        return trace,start1

#underlying function
def g(x):
    global co
    return np.prod( x+np.sin(co*np.pi*x),axis=1)

np.random.seed(randomSeed)
XX= np.atleast_2d(np.random.uniform(0,1.,size =numObservations)).T
Y = np.atleast_2d(g(XX)).T
X,mean,std = z_score(XX)

trace,map_= sample(numHiddenUnits, X, Y)


 data =np.atleast_2d( np.linspace(0., 1., 100)).T
 theano.config.compute_test_value = 'off'

 d = T.dmatrix()
 w= T.dmatrix()
 b = T.vector()
 bo = T.dscalar()
 wo = T.dmatrix()
 y= T.dot( T.nnet.sigmoid( T.dot(d,w)+b),wo)+bo
 f = theano.function([d,w,b,wo,bo],y)


 data1,mean,std = z_score(data, mean, std)
 print trace['wih'].shape
 for s in trace[::1]:
     plt.plot(data, f(data1,s['wih'],s['bih'],s['who'],s['bho']),c='blue',alpha =0.15)


 plt.plot(data,g(data),'black')

 # prediction of maximum a posteriori network
 plt.plot(data,   f(data1,map_['wih'],map_['bih'],map_['who'],map_['bho']),c='red')
 plt.plot(XX,Y,'r.',markersize=10)

 plt.show()

更新:我按以下方式更改代码:首先,分配模型参数的test_values似乎很麻烦!但是没有 'test_value' 的值, find_MAP 不会收敛到正确的点,所以我删除了 test_value 分配并为 find_MAP() 提供了一个起点(initpoint)。其次,为了让一切更简单,我用 Half_Normals 替换了 Gamma 超先验。Step-method 也被 Metropolis 取代。知道示例函数如下所示: def sample(nHiddenUnts,X,Y): nFeatures = X.shape 1 with pm.Model() 作为模型:

        bhoSd =  pm.HalfNormal('bhoSd',sd=100**2)
        whoSd =  pm.HalfNormal('whoSd',sd=100**2)
        bihSd =  pm.HalfNormal('bihSd',sd=100**2)
        wihSd =  pm.HalfNormal('wihSd',sd=100**2)
        noiseSd = pm.HalfNormal('noiseSd',sd=0.001)



        #priors
        bho = pm.Normal('bho',mu=0,sd=bhoSd)
        who = pm.Normal('who',mu=0,sd=whoSd,shape=(nHiddenUnts,1) )
        bih = pm.Normal('bih',mu=0,sd=bihSd ,shape=nHiddenUnts)
        wih= pm.Normal('wih',mu=0,sd=wihSd ,shape= (nFeatures,nHiddenUnts))


        netOut=T.dot( T.nnet.sigmoid( T.dot( X , wih ) + bih ) , who ) + bho

        #likelihood
        likelihood = pm.Normal('likelihood',mu=netOut,sd=noiseSd,observed= Y)

        #========================================================
        initpoint = {'bho':1,
                   'who':np.random.normal(size=nHiddenUnts,loc=0,scale=1).reshape(nHiddenUnts,1),
                   'bih':np.random.normal(size=nHiddenUnts,loc=0,scale=1),
                   'wih':np.random.normal(size=nFeatures*nHiddenUnts,loc=0,scale=1).reshape(nFeatures,nHiddenUnts),
                   'bhoSd':100,
                   'bihSd':100,
                   'whoSd':100,
                   'wihSd':100,
                   'noiseSd':0.1
                   }

        start1 = pm.find_MAP(start=initpoint,fmin=scipy.optimize.fmin_l_bfgs_b, vars=[bho,who,bih,wih],model=model)
        step = pm.Metropolis(tune=True,tune_interval=10000)
        trace = pm.sample(numSamples,step,start=start1,progressbar=True,random_seed=1234)[10000::5]
        #========================================================

        return trace,start1

绘制 15000 个样本后的结果是这样的:在此处输入图像描述 只有当我在 initpoint(find_MAP 的起点)中将 NoiseSd 超参数和“noisSd”的标准差增加到 0.1 时,结果才会变成这样:在此处输入图像描述 但是这么高噪音水平是不可取的。

4

1 回答 1

1

该模型与标准 Metropolis 采样器的性能如何?这应该可以说明问题是出在算法上还是出在其他地方。MAP 和 NUTS 估计值具有可比性这一事实似乎表明后者。

于 2015-07-07T03:14:00.050 回答