I'm trying to use KernelPCA for reducing the dimensionality of a dataset to 2D (both for visualization purposes and for further data analysis).
I experimented computing KernelPCA using a RBF kernel at various values of Gamma, but the result is unstable:
(each frame is a slightly different value of Gamma, where Gamma is varying continuously from 0 to 1)
Looks like it is not deterministic.
Is there a way to stabilize it/make it deterministic?
Code used to generate transformed data:
def pca(X, gamma1):
kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=gamma1)
X_kpca = kpca.fit_transform(X)
#X_back = kpca.inverse_transform(X_kpca)
return X_kpca