3

嗨,我用这段代码创建了一个 dataFrame 字典

import os
import pandas 
import glob

path="G:\my_dir\*"
dataList={}

for files in glob.glob(path):
    dataList[files]=(read_csv(files,sep=";",index_col='Date'))

字典中存在的不同数据帧具有不同的时间样本。dataFrame(A) 的一个例子是

Date               Volume   Value 
2014-01-04 06:00:02 6062   108000.0
2014-01-04 06:06:05 6062   107200.0
2014-01-04 06:12:07 6062   97400.0
2014-01-04 06:18:10 6062   99200.0
2014-01-04 06:24:12 6062   91300.0
2014-01-04 06:30:14 6062   84100.0
2014-01-04 06:36:17 6062   57000.0

dataFrame(B) 的示例是

Date                Volume Value 
2014-01-04 05:52:50  6062   4.7
2014-01-04 05:58:53  6062   4.7
2014-01-04 06:04:56  6062   4.9 
2014-01-04 06:10:58  6062   5.1
2014-01-04 06:17:01  6062   5.2
2014-01-04 06:23:03  6062   5.2
2014-01-04 06:29:05  6062   5.5
2014-01-04 06:35:08  6062   5.5

不同的数据框没有相同的行数。我想像这样将不同的数据框合并到一个数据框中:

    Data                 Volume       B               A               Value(DataframeN)
2014/04/01 05:52:50      6062        4.70            NaN
2014/04/01 05:58:53      6062        4.70            NaN
2014/04/01 06:04:56      6062        4.90            107465.51
2014/04/01 06:10:58      6062        5.10            100652.60
2014/04/01 06:17:01      6062        5.20            98899.57
2014/04/01 06:23:03      6062        5.20            92618.56
2014/04/01 06:29:05      6062        5.50            85301.73
2014/04/01 06:35:08      6062        5.50            61523.06

我使用 Matlab 使用命令轻松完成了此操作

ts_A=timeseries(ValueA,datenum(DateA));
ts_B=timeseries(ValueB,datenum(DateB));
res_A=resample(ts_A,datenum(DateB));

我必须对几组 csv 文件执行此操作,因此我想使用 python 自动化该过程。

肿瘤坏死因子

4

1 回答 1

5

你可以concat两个DataFrames, interpolate, 然后reindexDataFrame你想要的。

我假设我们有一定数量的DataFrames,其中DateDateTimeIndex所有的。我将在此示例中使用两个,因为您在问题中使用了两个,但代码适用于任何数字。

df_a

                     Volume   Value
Date                               
2014-01-04 06:00:02    6062  108000
2014-01-04 06:06:05    6062  107200
2014-01-04 06:12:07    6062   97400
2014-01-04 06:18:10    6062   99200
2014-01-04 06:24:12    6062   91300
2014-01-04 06:30:14    6062   84100
2014-01-04 06:36:17    6062   57000

df_b

                     Volume  Value
Date                              
2014-01-04 05:52:50    6062    4.7
2014-01-04 05:58:53    6062    4.7
2014-01-04 06:04:56    6062    4.9
2014-01-04 06:10:58    6062    5.1
2014-01-04 06:17:01    6062    5.2
2014-01-04 06:23:03    6062    5.2
2014-01-04 06:29:05    6062    5.5
2014-01-04 06:35:08    6062    5.5

我将把这些放到一个dict例子中。您将它们直接读入 a dict,因此您不需要执行此步骤。我只想展示我的示例dict是如何格式化的。dict keys没关系,任何有效的dict key都可以:

dataList = {'a': df_a,
            'b': df_b}

这使我们到达了您当前所在的位置,dataList希望我的格式与您的格式相同。

您需要做的第一件事是将DataFrames. 我使用dict keysasMultiIndex列名,这样您就可以跟踪给定列的哪个实例来自哪个DataFrame. 你可以这样做:

df = pd.concat(dataList.values(), axis=1, keys=dataList.keys())

这给你一个DataFrame这样的:

                         a              b      
                    Volume   Value Volume Value
Date                                           
2014-01-04 05:52:50    NaN     NaN   6062   4.7
2014-01-04 05:58:53    NaN     NaN   6062   4.7
2014-01-04 06:00:02   6062  108000    NaN   NaN
2014-01-04 06:04:56    NaN     NaN   6062   4.9
2014-01-04 06:06:05   6062  107200    NaN   NaN
2014-01-04 06:10:58    NaN     NaN   6062   5.1
2014-01-04 06:12:07   6062   97400    NaN   NaN
2014-01-04 06:17:01    NaN     NaN   6062   5.2
2014-01-04 06:18:10   6062   99200    NaN   NaN
2014-01-04 06:23:03    NaN     NaN   6062   5.2
2014-01-04 06:24:12   6062   91300    NaN   NaN
2014-01-04 06:29:05    NaN     NaN   6062   5.5
2014-01-04 06:30:14   6062   84100    NaN   NaN
2014-01-04 06:35:08    NaN     NaN   6062   5.5
2014-01-04 06:36:17   6062   57000    NaN   NaN

接下来,您需要进行插值以填充缺失值。我使用它进行插值,'time' mode以便正确处理时间索引:

df = df.interpolate('time')

这给你一个DataFrame这样的:

                         a                     b          
                    Volume          Value Volume     Value
Date                                                      
2014-01-04 05:52:50    NaN            NaN   6062  4.700000
2014-01-04 05:58:53    NaN            NaN   6062  4.700000
2014-01-04 06:00:02   6062  108000.000000   6062  4.738017
2014-01-04 06:04:56   6062  107352.066116   6062  4.900000
2014-01-04 06:06:05   6062  107200.000000   6062  4.938122
2014-01-04 06:10:58   6062   99267.955801   6062  5.100000
2014-01-04 06:12:07   6062   97400.000000   6062  5.119008
2014-01-04 06:17:01   6062   98857.851240   6062  5.200000
2014-01-04 06:18:10   6062   99200.000000   6062  5.200000
2014-01-04 06:23:03   6062   92805.801105   6062  5.200000
2014-01-04 06:24:12   6062   91300.000000   6062  5.257182
2014-01-04 06:29:05   6062   85472.375691   6062  5.500000
2014-01-04 06:30:14   6062   84100.000000   6062  5.500000
2014-01-04 06:35:08   6062   62151.239669   6062  5.500000
2014-01-04 06:36:17   6062   57000.000000   6062  5.500000

我认为通常最好停在这里,因为您保留所有csv文件中的所有数据。但是你说你只想要从最长的时间点csv。为此,您需要找到最长的DataFrame,然后获取与其索引对应的行。找到最长DataFrame的很容易,您只需找到最大长度的那个。只保留其中的时间点index也很容易,您只需使用它进行切片index(您使用这种loc切片的方法)。

longind = max(dataList.values(), key=len).index
df = df.loc[longind]

这为您提供以下最终结果DataFrame

                         a                     b      
                    Volume          Value Volume Value
Date                                                  
2014-01-04 05:52:50    NaN            NaN   6062   4.7
2014-01-04 05:58:53    NaN            NaN   6062   4.7
2014-01-04 06:04:56   6062  107352.066116   6062   4.9
2014-01-04 06:10:58   6062   99267.955801   6062   5.1
2014-01-04 06:17:01   6062   98857.851240   6062   5.2
2014-01-04 06:23:03   6062   92805.801105   6062   5.2
2014-01-04 06:29:05   6062   85472.375691   6062   5.5
2014-01-04 06:35:08   6062   62151.239669   6062   5.5

如果需要,可以将其合并为一行:

df = pd.concat(dataList.values(), axis=1, keys=dataList.keys()).interpolate('time').loc[max(dataList.values(), key=len).index]

或者,也许更清晰的 4 行:

names = dataList.keys()
dfs = dataList.values()
longind = max(dfs, key=len).index
df = pd.concat(dfs, axis=1, keys=names).interpolate('time').loc[longind]

我不确定为什么我的最终结果与您显示的不同。我自己在(R2015A)中运行了您的示例,MATLAB并得到了与此处相同的结果,因此我怀疑您使用与示例不同的数据集生成了最终数据。

于 2015-06-16T10:16:01.800 回答