我正在考虑将 ArangoDB 用于我的一个新项目,但我一直无法找到有关其可扩展性的大量信息。
具体来说,我正在寻找有关计数功能的一些信息。是否有一种可靠的方法(可能是公式)来近似计算集合中与简单布尔值匹配的文档数量需要多长时间?
集合中的所有文档都将具有相同的字段,但具有不同的值。如何确定统计数亿份文档需要多长时间?
只需创建一个集合users
并根据需要插入尽可能多的随机文档。
FOR i IN 1..1100000
INSERT {
name: CONCAT("test", i),
year: 1970 + FLOOR(RAND() * 55),
gender: i % 2 == 0 ? 'male' : 'female'
} IN users
然后进行计数:
FOR user IN users
FILTER user.gender == 'male'
COLLECT WITH COUNT INTO number
RETURN {
number: number
}
如果您在生产中使用此查询,请确保也添加索引。在我的机器上,它将执行时间减少了 > 100 倍(0.043 秒/1.1mio 文档)。
使用 EXPLAIN 检查您的查询,以进一步估计执行的“昂贵”程度。
Query string:
FOR user IN users
FILTER user.gender == 'male'
COLLECT WITH COUNT INTO number
RETURN {
number: number
}
Execution plan:
Id NodeType Est. Comment
1 SingletonNode 1 * ROOT
8 IndexRangeNode 550001 - FOR user IN users /* hash index scan */
5 AggregateNode 1 - COLLECT WITH COUNT INTO number /* sorted*/
6 CalculationNode 1 - LET #4 = { "number" : number } /* simple expression */
7 ReturnNode 1 - RETURN #4
Indexes used:
Id Type Collection Unique Sparse Selectivity Est. Fields Ranges
8 hash users false false 0.00 % `gender` [ `gender` == "male" ]
Optimization rules applied:
Id RuleName
1 use-index-range
2 remove-filter-covered-by-index